IDEAS home Printed from
   My bibliography  Save this article

Stock index forecasting based on a hybrid model


  • Wang, Ju-Jie
  • Wang, Jian-Zhou
  • Zhang, Zhe-George
  • Guo, Shu-Po


Forecasting the stock market price index is a challenging task. The exponential smoothing model (ESM), autoregressive integrated moving average model (ARIMA), and the back propagation neural network (BPNN) can be used to make forecasts based on time series. In this paper, a hybrid approach combining ESM, ARIMA, and BPNN is proposed to be the most advantageous of all three models. The weight of the proposed hybrid model (PHM) is determined by genetic algorithm (GA). The closing of the Shenzhen Integrated Index (SZII) and opening of the Dow Jones Industrial Average Index (DJIAI) are used as illustrative examples to evaluate the performances of the PHM. Numerical results show that the proposed model outperforms all traditional models, including ESM, ARIMA, BPNN, the equal weight hybrid model (EWH), and the random walk model (RWM).

Suggested Citation

  • Wang, Ju-Jie & Wang, Jian-Zhou & Zhang, Zhe-George & Guo, Shu-Po, 2012. "Stock index forecasting based on a hybrid model," Omega, Elsevier, vol. 40(6), pages 758-766.
  • Handle: RePEc:eee:jomega:v:40:y:2012:i:6:p:758-766
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Armstrong, J. Scott, 1989. "Combining forecasts: The end of the beginning or the beginning of the end?," International Journal of Forecasting, Elsevier, vol. 5(4), pages 585-588.
    2. Wu, Berlin & Chang, Chih-Li, 2002. "Using genetic algorithms to parameters (d,r) estimation for threshold autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 38(3), pages 315-330, January.
    3. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    4. Ribeiro, Celma O. & Oliveira, Sydnei M., 2011. "A hybrid commodity price-forecasting model applied to the sugar–alcohol sector," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(2), June.
    5. Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
    6. Pao, H.T., 2009. "Forecasting energy consumption in Taiwan using hybrid nonlinear models," Energy, Elsevier, vol. 34(10), pages 1438-1446.
    7. Uri, Noel D, 1977. "Forecasting: A hybrid approach," Omega, Elsevier, vol. 5(4), pages 463-472.
    8. Huang, Min & He, Yong & Cen, Haiyan, 2007. "Predictive analysis on electric-power supply and demand in China," Renewable Energy, Elsevier, vol. 32(7), pages 1165-1174.
    9. Leigh, W. & Paz, M. & Purvis, R., 2002. "An analysis of a hybrid neural network and pattern recognition technique for predicting short-term increases in the NYSE composite index," Omega, Elsevier, vol. 30(2), pages 69-76, April.
    10. Sunil Gupta & Peter C. Wilton, 1987. "Combination of Forecasts: An Extension," Management Science, INFORMS, vol. 33(3), pages 356-372, March.
    11. Franses, Philip Hans & Ghijsels, Hendrik, 1999. "Additive outliers, GARCH and forecasting volatility," International Journal of Forecasting, Elsevier, vol. 15(1), pages 1-9, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
    2. Sermpinis, Georgios & Theofilatos, Konstantinos & Karathanasopoulos, Andreas & Georgopoulos, Efstratios F. & Dunis, Christian, 2013. "Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and Particle Swarm Optimization," European Journal of Operational Research, Elsevier, vol. 225(3), pages 528-540.
    3. Doyle, John R. & Chen, Catherine H., 2013. "Patterns in stock market movements tested as random number generators," European Journal of Operational Research, Elsevier, vol. 227(1), pages 122-132.
    4. repec:spr:fininn:v:3:y:2017:i:1:d:10.1186_s40854-017-0074-9 is not listed on IDEAS
    5. Zhao, Weigang & Wang, Jianzhou & Lu, Haiyan, 2014. "Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model," Omega, Elsevier, vol. 45(C), pages 80-91.
    6. Heng-Li Yang & Han-Chou Lin, 2017. "Applying the Hybrid Model of EMD, PSR, and ELM to Exchange Rates Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 49(1), pages 99-116, January.
    7. repec:spr:eurasi:v:7:y:2017:i:3:d:10.1007_s40821-016-0056-2 is not listed on IDEAS
    8. Yu, Feng & Xu, Xiaozhong, 2014. "A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network," Applied Energy, Elsevier, vol. 134(C), pages 102-113.
    9. Martha Cecilia García & Aura María Jalal & Luis Alfonso Garzón & Jorge Mario López, 2013. "Métodos para predecir índices Bursátiles," REVISTA ECOS DE ECONOMÍA, UNIVERSIDAD EAFIT, December.
    10. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2017. "Creating Investment Scheme with State Space Modeling," CARF F-Series cf406, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    11. Nazarian, Rafik & Gandali Alikhani, Nadiya & Naderi, Esmaeil & Amiri, Ashkan, 2013. "Forecasting Stock Market Volatility: A Forecast Combination Approach," MPRA Paper 46786, University Library of Munich, Germany.
    12. Ruiz-Aguilar, J.J. & Turias, I.J. & Jiménez-Come, M.J., 2014. "Hybrid approaches based on SARIMA and artificial neural networks for inspection time series forecasting," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 1-13.
    13. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2017. "Creating Investment Scheme with State Space Modeling," CIRJE F-Series CIRJE-F-1038, CIRJE, Faculty of Economics, University of Tokyo.
    14. Svetunkov, Ivan & Kourentzes, Nikolaos, 2015. "Complex Exponential Smoothing," MPRA Paper 69394, University Library of Munich, Germany.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:40:y:2012:i:6:p:758-766. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.