IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v257y2020ics0306261919317209.html
   My bibliography  Save this article

A multi-scale method for forecasting oil price with multi-factor search engine data

Author

Listed:
  • Tang, Ling
  • Zhang, Chengyuan
  • Li, Ling
  • Wang, Shouyang

Abstract

With the boom in big data, a promising idea for using search engine data has emerged and improved international oil price prediction, a hot topic in the fields of energy system modelling and analysis. Since different search engine data drive the oil price in different ways at different timescales, a multi-scale forecasting methodology is proposed that carefully explores the multi-scale relationship between the oil price and multi-factor search engine data. In the proposed methodology, three major steps are involved: (1) a multi-factor data process, to collect informative search engine data, reduce dimensionality, and test the predictive power via statistical analyses; (2) multi-scale analysis, to extract matched common modes at similar timescales from the oil price and multi-factor search engine data via multivariate empirical mode decomposition; (3) oil price prediction, including individual prediction at each timescale and ensemble prediction across timescales via a typical forecasting technique. With the Brent oil price as a sample, the empirical results show that the novel methodology significantly outperforms its original form (without multi-factor search engine data and multi-scale analysis), semi-improved versions (with either multi-factor search engine data or multi-scale analysis), and similar counterparts (with other multi-scale analysis), in both the level and directional predictions.

Suggested Citation

  • Tang, Ling & Zhang, Chengyuan & Li, Ling & Wang, Shouyang, 2020. "A multi-scale method for forecasting oil price with multi-factor search engine data," Applied Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:appene:v:257:y:2020:i:c:s0306261919317209
    DOI: 10.1016/j.apenergy.2019.114033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919317209
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Garcia & Claudio Juan Tessone & Pavlin Mavrodiev & Nicolas Perony, 2014. "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Papers 1408.1494, arXiv.org.
    2. Ji, Qiang & Guo, Jian-Feng, 2015. "Oil price volatility and oil-related events: An Internet concern study perspective," Applied Energy, Elsevier, vol. 137(C), pages 256-264.
    3. Yao, Ting & Zhang, Yue-Jun & Ma, Chao-Qun, 2017. "How does investor attention affect international crude oil prices?," Applied Energy, Elsevier, vol. 205(C), pages 336-344.
    4. Zhang, Xun & Lai, K.K. & Wang, Shou-Yang, 2008. "A new approach for crude oil price analysis based on Empirical Mode Decomposition," Energy Economics, Elsevier, vol. 30(3), pages 905-918, May.
    5. Zhang, Xun & Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method," Energy Economics, Elsevier, vol. 31(5), pages 768-778, September.
    6. Guo, Jian-Feng & Ji, Qiang, 2013. "How does market concern derived from the Internet affect oil prices?," Applied Energy, Elsevier, vol. 112(C), pages 1536-1543.
    7. Ling Tang & Wei Dai & Lean Yu & Shouyang Wang, 2015. "A Novel CEEMD-Based EELM Ensemble Learning Paradigm for Crude Oil Price Forecasting," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 141-169.
    8. David Garcia & Claudio Tessone & Pavlin Mavrodiev & Nicolas Perony, "undated". "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Working Papers ETH-RC-14-001, ETH Zurich, Chair of Systems Design.
    9. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
    10. Tang, Ling & Wu, Yao & Yu, Lean, 2018. "A randomized-algorithm-based decomposition-ensemble learning methodology for energy price forecasting," Energy, Elsevier, vol. 157(C), pages 526-538.
    11. Han, Liyan & Lv, Qiuna & Yin, Libo, 2017. "Can investor attention predict oil prices?," Energy Economics, Elsevier, vol. 66(C), pages 547-558.
    12. Zhao, Lu-Tao & Wang, Yi & Guo, Shi-Qiu & Zeng, Guan-Rong, 2018. "A novel method based on numerical fitting for oil price trend forecasting," Applied Energy, Elsevier, vol. 220(C), pages 154-163.
    13. He, Kaijian & Chen, Yanhui & Tso, Geoffrey K.F., 2017. "Price forecasting in the precious metal market: A multivariate EMD denoising approach," Resources Policy, Elsevier, vol. 54(C), pages 9-24.
    14. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    15. Li, Xin & Ma, Jian & Wang, Shouyang & Zhang, Xun, 2015. "How does Google search affect trader positions and crude oil prices?," Economic Modelling, Elsevier, vol. 49(C), pages 162-171.
    16. Huang, Bwo-Nung & Hwang, M.J. & Peng, Hsiao-Ping, 2005. "The asymmetry of the impact of oil price shocks on economic activities: An application of the multivariate threshold model," Energy Economics, Elsevier, vol. 27(3), pages 455-476, May.
    17. Md. Rabiul Islam & Md. Rashed-Al-Mahfuz & Shamim Ahmad & Md. Khademul Islam Molla, 2012. "Multiband Prediction Model for Financial Time Series with Multivariate Empirical Mode Decomposition," Discrete Dynamics in Nature and Society, Hindawi, vol. 2012, pages 1-21, March.
    18. Schmidbauer, Harald & Rösch, Angi, 2012. "OPEC news announcements: Effects on oil price expectation and volatility," Energy Economics, Elsevier, vol. 34(5), pages 1656-1663.
    19. Demirer, RIza & Kutan, Ali M., 2010. "The behavior of crude oil spot and futures prices around OPEC and SPR announcements: An event study perspective," Energy Economics, Elsevier, vol. 32(6), pages 1467-1476, November.
    20. Wang, Jue & Athanasopoulos, George & Hyndman, Rob J. & Wang, Shouyang, 2018. "Crude oil price forecasting based on internet concern using an extreme learning machine," International Journal of Forecasting, Elsevier, vol. 34(4), pages 665-677.
    21. Kaijian He & Rui Zha & Jun Wu & Kin Keung Lai, 2016. "Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
    22. Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    2. Li Jingjing & Tang Ling & Li Ling, 2020. "The Co-Movements Between Crude Oil Price and Internet Concerns: Causality Analysis in the Frequency Domain," Journal of Systems Science and Information, De Gruyter, vol. 8(3), pages 224-239, June.
    3. Zheng, Li & Sun, Yuying & Wang, Shouyang, 2024. "A novel interval-based hybrid framework for crude oil price forecasting and trading," Energy Economics, Elsevier, vol. 130(C).
    4. Zhao, Lu-Tao & Wang, Dai-Song & Ren, Zhong-Yuan, 2024. "The impact of joint events on oil price volatility: Evidence from a dynamic graphical news analysis model," Economic Modelling, Elsevier, vol. 130(C).
    5. Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2023. "Attention to oil prices and its impact on the oil, gold and stock markets and their covariance," Energy Economics, Elsevier, vol. 120(C).
    6. Li, Sufang & Zhang, Hu & Yuan, Di, 2019. "Investor attention and crude oil prices: Evidence from nonlinear Granger causality tests," Energy Economics, Elsevier, vol. 84(C).
    7. Li, Jingjing & Tang, Ling & Wang, Shouyang, 2020. "Forecasting crude oil price with multilingual search engine data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    8. Lu-Tao Zhao & Guan-Rong Zeng & Wen-Jing Wang & Zhi-Gang Zhang, 2019. "Forecasting Oil Price Using Web-based Sentiment Analysis," Energies, MDPI, vol. 12(22), pages 1-18, November.
    9. Wang, Jue & Athanasopoulos, George & Hyndman, Rob J. & Wang, Shouyang, 2018. "Crude oil price forecasting based on internet concern using an extreme learning machine," International Journal of Forecasting, Elsevier, vol. 34(4), pages 665-677.
    10. Xiao, Jihong & Wen, Fenghua & He, Zhifang, 2023. "Impact of geopolitical risks on investor attention and speculation in the oil market: Evidence from nonlinear and time-varying analysis," Energy, Elsevier, vol. 267(C).
    11. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    12. Xiao, Jihong & Wang, Yudong, 2021. "Investor attention and oil market volatility: Does economic policy uncertainty matter?," Energy Economics, Elsevier, vol. 97(C).
    13. Antonio Jose Garzon Gordon & Luis Angel Hierro Recio, 2019. "External Effects of the War in Ukraine: The Impact on the Price of Oil in the Short-term," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 267-276.
    14. Wei, He & Guo, Yaoqi & Yu, Zhuling & Cheng, Hui, 2021. "The impact of events on metal futures based on the perspective of Google Trends," Resources Policy, Elsevier, vol. 74(C).
    15. Wu, Yu-Xi & Wu, Qing-Biao & Zhu, Jia-Qi, 2019. "Improved EEMD-based crude oil price forecasting using LSTM networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 114-124.
    16. Zhao, Yuan & Zhang, Weiguo & Gong, Xue & Wang, Chao, 2021. "A novel method for online real-time forecasting of crude oil price," Applied Energy, Elsevier, vol. 303(C).
    17. Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
    18. Qu, Hui & Li, Guo, 2023. "Multi-perspective investor attention and oil futures volatility forecasting," Energy Economics, Elsevier, vol. 119(C).
    19. Ji, Qiang & Guo, Jian-Feng, 2015. "Oil price volatility and oil-related events: An Internet concern study perspective," Applied Energy, Elsevier, vol. 137(C), pages 256-264.
    20. Shen, Yiran & Sun, Xiaolei & Ji, Qiang & Zhang, Dayong, 2023. "Climate events matter in the global natural gas market," Energy Economics, Elsevier, vol. 125(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:257:y:2020:i:c:s0306261919317209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.