IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v205y2017icp336-344.html
   My bibliography  Save this article

How does investor attention affect international crude oil prices?

Author

Listed:
  • Yao, Ting
  • Zhang, Yue-Jun
  • Ma, Chao-Qun

Abstract

In order to investigate the impacting mechanism of investors’ attention and crude oil prices, we construct a direct, timely and unambiguous proxy for investor attention in crude oil market by aggregating the Google search volume index (GSVI). Based on the GSVI, we employ the Structural Vector Autoregression (SVAR) model to empirically explore the impact of investor attention on WTI crude oil price from January 2004 to November 2016. The results indicate that: (1) investor attention does have significant negative impact on WTI crude oil price during the sample period; (2) investor attention shocks contributes 15% to the long-run fluctuation of WTI crude oil price during the sample period, which is second only to that of supply shocks (69%) among the contributors concerned; and (3) when the business cycle stays in expansion, it has positive influence on both investor attention and WTI crude oil price. Meanwhile, our robustness check, using Brent crude oil price and a different construction form of the GSVI, confirms that the central results are reliable.

Suggested Citation

  • Yao, Ting & Zhang, Yue-Jun & Ma, Chao-Qun, 2017. "How does investor attention affect international crude oil prices?," Applied Energy, Elsevier, vol. 205(C), pages 336-344.
  • Handle: RePEc:eee:appene:v:205:y:2017:i:c:p:336-344
    DOI: 10.1016/j.apenergy.2017.07.131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917310048
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kilian, Lutz & Lee, Thomas K., 2014. "Quantifying the speculative component in the real price of oil: The role of global oil inventories," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 71-87.
    2. Yuan, Yu, 2015. "Market-wide attention, trading, and stock returns," Journal of Financial Economics, Elsevier, vol. 116(3), pages 548-564.
    3. Ding, Zhihua & Liu, Zhenhua & Zhang, Yuejun & Long, Ruyin, 2017. "The contagion effect of international crude oil price fluctuations on Chinese stock market investor sentiment," Applied Energy, Elsevier, vol. 187(C), pages 27-36.
    4. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
    5. Zhang, Yue-Jun & Zhang, Lu, 2015. "Interpreting the crude oil price movements: Evidence from the Markov regime switching model," Applied Energy, Elsevier, vol. 143(C), pages 96-109.
    6. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    7. Derek Bunn, Julien Chevallier, Yannick Le Pen, and Benoit Sevi, 2017. "Fundamental and Financial Influences on the Co-movement of Oil and Gas Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    8. Zhi Da & Joseph Engelberg & Pengjie Gao, 2015. "Editor's Choice The Sum of All FEARS Investor Sentiment and Asset Prices," Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 1-32.
    9. Basher, Syed Abul & Haug, Alfred A. & Sadorsky, Perry, 2012. "Oil prices, exchange rates and emerging stock markets," Energy Economics, Elsevier, vol. 34(1), pages 227-240.
    10. Wang, Endong, 2015. "Benchmarking whole-building energy performance with multi-criteria technique for order preference by similarity to ideal solution using a selective objective-weighting approach," Applied Energy, Elsevier, vol. 146(C), pages 92-103.
    11. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    12. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    13. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    14. Daniel Andrei & Michael Hasler, 2015. "Investor Attention and Stock Market Volatility," Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 33-72.
    15. Michael S. Drake & Darren T. Roulstone & Jacob R. Thornock, 2012. "Investor Information Demand: Evidence from Google Searches Around Earnings Announcements," Journal of Accounting Research, Wiley Blackwell, vol. 50(4), pages 1001-1040, September.
    16. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    17. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    18. De Felice, Matteo & Alessandri, Andrea & Catalano, Franco, 2015. "Seasonal climate forecasts for medium-term electricity demand forecasting," Applied Energy, Elsevier, vol. 137(C), pages 435-444.
    19. Kim, Soyoung, 1999. "Do monetary policy shocks matter in the G-7 countries? Using common identifying assumptions about monetary policy across countries," Journal of International Economics, Elsevier, vol. 48(2), pages 387-412, August.
    20. Zhi-Fu Mi & Yi-Ming Wei & Bao-Jun Tang & Rong-Gang Cong & Hao Yu & Hong Cao & Dabo Guan, 2017. "Risk assessment of oil price from static and dynamic modelling approaches," Applied Economics, Taylor & Francis Journals, vol. 49(9), pages 929-939, February.
    21. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    22. Brad M. Barber & Terrance Odean, 2008. "All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors," Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 785-818, April.
    23. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2014. "Oil price shocks and agricultural commodity prices," Energy Economics, Elsevier, vol. 44(C), pages 22-35.
    24. Chen, Hao & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2016. "Impacts of OPEC's political risk on the international crude oil prices: An empirical analysis based on the SVAR models," Energy Economics, Elsevier, vol. 57(C), pages 42-49.
    25. Peng, Lin & Xiong, Wei, 2006. "Investor attention, overconfidence and category learning," Journal of Financial Economics, Elsevier, vol. 80(3), pages 563-602, June.
    26. Edelen, Roger M. & Ince, Ozgur S. & Kadlec, Gregory B., 2016. "Institutional investors and stock return anomalies," Journal of Financial Economics, Elsevier, vol. 119(3), pages 472-488.
    27. Seasholes, Mark S. & Wu, Guojun, 2007. "Predictable behavior, profits, and attention," Journal of Empirical Finance, Elsevier, vol. 14(5), pages 590-610, December.
    28. An, Haizhong & Gao, Xiangyun & Fang, Wei & Ding, Yinghui & Zhong, Weiqiong, 2014. "Research on patterns in the fluctuation of the co-movement between crude oil futures and spot prices: A complex network approach," Applied Energy, Elsevier, vol. 136(C), pages 1067-1075.
    29. Halling, Michael & Yu, Jin & Zechner, Josef, 2016. "Leverage dynamics over the business cycle," Journal of Financial Economics, Elsevier, vol. 122(1), pages 21-41.
    30. R. David Mclean & Mengxin Zhao, 2014. "The Business Cycle, Investor Sentiment, and Costly External Finance," Journal of Finance, American Finance Association, vol. 69(3), pages 1377-1409, June.
    31. Gaitani, N. & Lehmann, C. & Santamouris, M. & Mihalakakou, G. & Patargias, P., 2010. "Using principal component and cluster analysis in the heating evaluation of the school building sector," Applied Energy, Elsevier, vol. 87(6), pages 2079-2086, June.
    32. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    33. Salman Arif & Charles M. C. Lee, 2014. "Aggregate Investment and Investor Sentiment," Review of Financial Studies, Society for Financial Studies, vol. 27(11), pages 3241-3279.
    34. Narayan, Paresh Kumar & Narayan, Seema & Prasad, Arti, 2008. "A structural VAR analysis of electricity consumption and real GDP: Evidence from the G7 countries," Energy Policy, Elsevier, vol. 36(7), pages 2765-2769, July.
    35. Hirotugu Akaike, 1969. "Fitting autoregressive models for prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 243-247, December.
    36. Zhang, Xiao-Bing & Qin, Ping & Chen, Xiaolan, 2017. "Strategic oil stockpiling for energy security: The case of China and India," Energy Economics, Elsevier, vol. 61(C), pages 253-260.
    37. Wu, Gang & Zhang, Yue-Jun, 2014. "Does China factor matter? An econometric analysis of international crude oil prices," Energy Policy, Elsevier, vol. 72(C), pages 78-86.
    38. Zhang, Yue-Jun, 2013. "Speculative trading and WTI crude oil futures price movement: An empirical analysis," Applied Energy, Elsevier, vol. 107(C), pages 394-402.
    39. Zhang, Yue-Jun & Yao, Ting, 2016. "Interpreting the movement of oil prices: Driven by fundamentals or bubbles?," Economic Modelling, Elsevier, vol. 55(C), pages 226-240.
    40. Zhang, Yue-Jun & Wang, Zi-Yi, 2013. "Investigating the price discovery and risk transfer functions in the crude oil and gasoline futures markets: Some empirical evidence," Applied Energy, Elsevier, vol. 104(C), pages 220-228.
    41. Li, Qiming & Cheng, Ke & Yang, Xiaoguang, 2017. "Response pattern of stock returns to international oil price shocks: From the perspective of China’s oil industrial chain," Applied Energy, Elsevier, vol. 185(P2), pages 1821-1831.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Zhifang, 2020. "Dynamic impacts of crude oil price on Chinese investor sentiment: Nonlinear causality and time-varying effect," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 131-153.
    2. Nikkinen, Jussi & Rothovius, Timo, 2019. "Energy sector uncertainty decomposition: New approach based on implied volatilities," Applied Energy, Elsevier, vol. 248(C), pages 141-148.
    3. F. Benedetto & L. Mastroeni & P. Vellucci, 0. "Modeling the flow of information between financial time-series by an entropy-based approach," Annals of Operations Research, Springer, vol. 0, pages 1-18.
    4. Li, Jingjing & Tang, Ling & Wang, Shouyang, 2020. "Forecasting crude oil price with multilingual search engine data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    5. Lu-Tao Zhao & Guan-Rong Zeng & Wen-Jing Wang & Zhi-Gang Zhang, 2019. "Forecasting Oil Price Using Web-based Sentiment Analysis," Energies, MDPI, Open Access Journal, vol. 12(22), pages 1-18, November.
    6. Yong Jiang & Yi-Shuai Ren & Chao-Qun Ma & Jiang-Long Liu & Basil Sharp, 2018. "Does the price of strategic commodities respond to U.S. Partisan Conflict?," Papers 1810.08396, arXiv.org, revised Feb 2020.
    7. Li Jingjing & Tang Ling & Li Ling, 2020. "The Co-Movements Between Crude Oil Price and Internet Concerns: Causality Analysis in the Frequency Domain," Journal of Systems Science and Information, De Gruyter, vol. 8(3), pages 224-239, June.
    8. Shen, Yifan & Shi, Xunpeng & Variam, Hari Malamakkavu Padinjare, 2018. "Risk transmission mechanism between energy markets: A VAR for VaR approach," Energy Economics, Elsevier, vol. 75(C), pages 377-388.
    9. Lu-Tao Zhao & Li-Na Liu & Zi-Jie Wang & Ling-Yun He, 2019. "Forecasting Oil Price Volatility in the Era of Big Data: A Text Mining for VaR Approach," Sustainability, MDPI, Open Access Journal, vol. 11(14), pages 1-20, July.
    10. Yajie Qi & Huajiao Li & Sui Guo & Sida Feng, 2019. "Dynamic Transmission of Correlation between Investor Attention and Stock Price: Evidence from China’s Energy Industry Typical Stocks," Complexity, Hindawi, vol. 2019, pages 1-15, December.
    11. Gong, Xu & Chen, Liqiang & Lin, Boqiang, 2020. "Analyzing dynamic impacts of different oil shocks on oil price," Energy, Elsevier, vol. 198(C).
    12. Jiang, Yong & Ren, Yi-Shuai & Ma, Chao-Qun & Liu, Jiang-Long & Sharp, Basil, 2020. "Does the price of strategic commodities respond to U.S. partisan conflict?," Resources Policy, Elsevier, vol. 66(C).
    13. Zhang, Yue-Jun & Chevallier, Julien & Guesmi, Khaled, 2017. "“De-financialization” of commodities? Evidence from stock, crude oil and natural gas markets," Energy Economics, Elsevier, vol. 68(C), pages 228-239.
    14. Polanco Martínez, Josué M. & Abadie, Luis M. & Fernández-Macho, J., 2018. "A multi-resolution and multivariate analysis of the dynamic relationships between crude oil and petroleum-product prices," Applied Energy, Elsevier, vol. 228(C), pages 1550-1560.
    15. Liu, Siyao & Fang, Wei & Gao, Xiangyun & Wang, Ze & An, Feng & Wen, Shaobo, 2020. "Self-similar behaviors in the crude oil market," Energy, Elsevier, vol. 211(C).
    16. Gu, Fu & Wang, Jiqiang & Guo, Jianfeng & Fan, Ying, 2020. "Dynamic linkages between international oil price, plastic stock index and recycle plastic markets in China," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 167-179.
    17. Tang, Ling & Zhang, Chengyuan & Li, Ling & Wang, Shouyang, 2020. "A multi-scale method for forecasting oil price with multi-factor search engine data," Applied Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Hao & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2016. "Impacts of OPEC's political risk on the international crude oil prices: An empirical analysis based on the SVAR models," Energy Economics, Elsevier, vol. 57(C), pages 42-49.
    2. Cai, Wenwu & Lu, Jing, 2019. "Investors’ financial attention frequency and trading activity," Pacific-Basin Finance Journal, Elsevier, vol. 58(C).
    3. Figuerola-Ferretti, Isabel & McCrorie, J. Roderick & Paraskevopoulos, Ioannis, 2020. "Mild explosivity in recent crude oil prices," Energy Economics, Elsevier, vol. 87(C).
    4. Pal, Debdatta & Mitra, Subrata K., 2016. "Asymmetric oil product pricing in India: Evidence from a multiple threshold nonlinear ARDL model," Economic Modelling, Elsevier, vol. 59(C), pages 314-328.
    5. Qadan, Mahmoud & Idilbi-Bayaa, Yasmeen, 2020. "Risk appetite and oil prices," Energy Economics, Elsevier, vol. 85(C).
    6. Papadamou, Stephanos & Fassas, Athanasios & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2020. "Direct and Indirect Effects of COVID-19 Pandemic on Implied Stock Market Volatility: Evidence from Panel Data Analysis," MPRA Paper 100020, University Library of Munich, Germany.
    7. Lu-Tao Zhao & Li-Na Liu & Zi-Jie Wang & Ling-Yun He, 2019. "Forecasting Oil Price Volatility in the Era of Big Data: A Text Mining for VaR Approach," Sustainability, MDPI, Open Access Journal, vol. 11(14), pages 1-20, July.
    8. Peltomäki, Jarkko & Graham, Michael & Hasselgren, Anton, 2018. "Investor attention to market categories and market volatility: The case of emerging markets," Research in International Business and Finance, Elsevier, vol. 44(C), pages 532-546.
    9. Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
    10. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    11. Raghavan, Mala, 2020. "An analysis of the global oil market using SVARMA models," Energy Economics, Elsevier, vol. 86(C).
    12. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    13. Han, Liyan & Lv, Qiuna & Yin, Libo, 2017. "Can investor attention predict oil prices?," Energy Economics, Elsevier, vol. 66(C), pages 547-558.
    14. Owain Ap Gwilym & Iftekhar Hasan & Qingwei Wang & Ru Xie, 2016. "In Search of Concepts: The Effects of Speculative Demand on Stock Returns," European Financial Management, European Financial Management Association, vol. 22(3), pages 427-449, June.
    15. Liu, Li & Wang, Yudong & Wu, Chongfeng & Wu, Wenfeng, 2016. "Disentangling the determinants of real oil prices," Energy Economics, Elsevier, vol. 56(C), pages 363-373.
    16. Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
    17. Piersanti, Giovanni & Piersanti, Mirko & Cicone, Antonio & Canofari, Paolo & Di Domizio, Marco, 2020. "An inquiry into the structure and dynamics of crude oil price using the fast iterative filtering algorithm," Energy Economics, Elsevier, vol. 92(C).
    18. Lee, Chien-Chiang & Chen, Mei-Ping, 2021. "The effects of investor attention and policy uncertainties on cross-border country exchange-traded fund returns," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 830-852.
    19. Cheng, Feiyang & Chiao, Chaoshin & Wang, Chunfeng & Fang, Zhenming & Yao, Shouyu, 2021. "Does retail investor attention improve stock liquidity? A dynamic perspective," Economic Modelling, Elsevier, vol. 94(C), pages 170-183.
    20. Zhang, Yue-Jun & Yao, Ting, 2016. "Interpreting the movement of oil prices: Driven by fundamentals or bubbles?," Economic Modelling, Elsevier, vol. 55(C), pages 226-240.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:205:y:2017:i:c:p:336-344. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.