IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method

  • Zhang, Xun
  • Yu, Lean
  • Wang, Shouyang
  • Lai, Kin Keung
Registered author(s):

The impact of extreme events on crude oil markets is of great importance in crude oil price analysis due to the fact that those events generally exert strong impact on crude oil markets. For better estimation of the impact of events on crude oil price volatility, this study attempts to use an EMD-based event analysis approach for this task. In the proposed method, the time series to be analyzed is first decomposed into several intrinsic modes with different time scales from fine-to-coarse and an average trend. The decomposed modes respectively capture the fluctuations caused by the extreme event or other factors during the analyzed period. It is found that the total impact of an extreme event is included in only one or several dominant modes, but the secondary modes provide valuable information on subsequent factors. For overlapping events with influences lasting for different periods, their impacts are separated and located in different modes. For illustration and verification purposes, two extreme events, the Persian Gulf War in 1991 and the Iraq War in 2003, are analyzed step by step. The empirical results reveal that the EMD-based event analysis method provides a feasible solution to estimating the impact of extreme events on crude oil prices variation.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6V7G-4W6XVYS-1/2/159ef3234cbe654415219b8480e9c70a
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Energy Economics.

Volume (Year): 31 (2009)
Issue (Month): 5 (September)
Pages: 768-778

as
in new window

Handle: RePEc:eee:eneeco:v:31:y:2009:i:5:p:768-778
Contact details of provider: Web page: http://www.elsevier.com/locate/eneco

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jean-Thomas Bernard & Lynda Khalaf & Maral Kichian, 2004. "Structural Change and Forecasting Long-Run Energy Prices," Working Papers 04-5, Bank of Canada.
  2. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
  3. Hillard G. Huntington, 1994. "Oil Price Forecasting in the 1980s: What Went Wrong?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-22.
  4. Zhang, Xun & Lai, K.K. & Wang, Shou-Yang, 2008. "A new approach for crude oil price analysis based on Empirical Mode Decomposition," Energy Economics, Elsevier, vol. 30(3), pages 905-918, May.
  5. A. Craig MacKinlay, 1997. "Event Studies in Economics and Finance," Journal of Economic Literature, American Economic Association, vol. 35(1), pages 13-39, March.
  6. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
  7. DEES Stéphane & KARADELOGLOU Pavlos & KAUFMANN Robert & SANCHEZ Marcelo, . "Modelling the World Oil Market: Assessment of a Quarterly Econometric Model," EcoMod2003 330700040, EcoMod.
  8. Ye, Michael & Zyren, John & Shore, Joanne, 2005. "A monthly crude oil spot price forecasting model using relative inventories," International Journal of Forecasting, Elsevier, vol. 21(3), pages 491-501.
  9. Ye, Michael & Zyren, John & Shore, Joanne, 2006. "Forecasting short-run crude oil price using high- and low-inventory variables," Energy Policy, Elsevier, vol. 34(17), pages 2736-2743, November.
  10. Saeed Moshiri & Faezeh Foroutan, 2006. "Forecasting Nonlinear Crude Oil Futures Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 81-96.
  11. Fan, Ying & Liang, Qiang & Wei, Yi-Ming, 2008. "A generalized pattern matching approach for multi-step prediction of crude oil price," Energy Economics, Elsevier, vol. 30(3), pages 889-904, May.
  12. Achim Zeileis & Friedrich Leisch & Kurt Hornik & Christian Kleiber, . "strucchange: An R Package for Testing for Structural Change in Linear Regression Models," Journal of Statistical Software, American Statistical Association, vol. 7(i02).
  13. Matteo Manera & Chiara Longo & Anil Markandya & Elisa Scarpa, 2007. "Evaluating the Empirical Performance of Alternative Econometric Models for Oil Price Forecasting," Working Papers 2007.4, Fondazione Eni Enrico Mattei.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:31:y:2009:i:5:p:768-778. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.