IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v501y2018icp98-110.html
   My bibliography  Save this article

Multi-step-ahead crude oil price forecasting using a hybrid grey wave model

Author

Listed:
  • Chen, Yanhui
  • Zhang, Chuan
  • He, Kaijian
  • Zheng, Aibing

Abstract

Crude oil is crucial to the operation and economic well-being of the modern society. Huge changes of crude oil price always cause panics to the global economy. There are many factors influencing crude oil price. Crude oil price prediction is still a difficult research problem widely discussed among researchers. Based on the researches on Heterogeneous Market Hypothesis and the relationship between crude oil price and macroeconomic factors, exchange market, stock market, this paper proposes a hybrid grey wave forecasting model, which combines Random Walk (RW)/ARMA to forecast multi-step-ahead crude oil price. More specifically, we use grey wave forecasting model to model the periodical characteristics of crude oil price and ARMA/RW to simulate the daily random movements. The innovation also comes from using the information of the time series graph to forecast crude oil price, since grey wave forecasting is a graphical prediction method. The empirical results demonstrate that based on the daily data of crude oil price, the hybrid grey wave forecasting model performs well in 15- to 20-step-ahead prediction and it always dominates ARMA and Random Walk in correct direction prediction.

Suggested Citation

  • Chen, Yanhui & Zhang, Chuan & He, Kaijian & Zheng, Aibing, 2018. "Multi-step-ahead crude oil price forecasting using a hybrid grey wave model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 98-110.
  • Handle: RePEc:eee:phsmap:v:501:y:2018:i:c:p:98-110
    DOI: 10.1016/j.physa.2018.02.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711830133X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
    2. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    3. Zhang, Xun & Lai, K.K. & Wang, Shou-Yang, 2008. "A new approach for crude oil price analysis based on Empirical Mode Decomposition," Energy Economics, Elsevier, vol. 30(3), pages 905-918, May.
    4. Dees, Stephane & Karadeloglou, Pavlos & Kaufmann, Robert K. & Sanchez, Marcelo, 2007. "Modelling the world oil market: Assessment of a quarterly econometric model," Energy Policy, Elsevier, vol. 35(1), pages 178-191, January.
    5. Yue-Jun Zhang & Yi-Ming Wei, 2011. "The dynamic influence of advanced stock market risk on international crude oil returns: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 967-978.
    6. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
    7. Aloui, Riadh & Ben Aïssa, Mohamed Safouane, 2016. "Relationship between oil, stock prices and exchange rates: A vine copula based GARCH method," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 458-471.
    8. He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
    9. Güntner, Jochen H.F., 2014. "How do oil producers respond to oil demand shocks?," Energy Economics, Elsevier, vol. 44(C), pages 1-13.
    10. Mensi, Walid & Hammoudeh, Shawkat & Shahzad, Syed Jawad Hussain & Shahbaz, Muhammad, 2017. "Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 258-279.
    11. He, Angela W.W. & Kwok, Jerry T.K. & Wan, Alan T.K., 2010. "An empirical model of daily highs and lows of West Texas Intermediate crude oil prices," Energy Economics, Elsevier, vol. 32(6), pages 1499-1506, November.
    12. Chen, Shiu-Sheng & Hsu, Kai-Wei, 2012. "Reverse globalization: Does high oil price volatility discourage international trade?," Energy Economics, Elsevier, vol. 34(5), pages 1634-1643.
    13. Panopoulou, Ekaterini & Pantelidis, Theologos, 2015. "Speculative behaviour and oil price predictability," Economic Modelling, Elsevier, vol. 47(C), pages 128-136.
    14. Yang, C. W. & Hwang, M. J. & Huang, B. N., 2002. "An analysis of factors affecting price volatility of the US oil market," Energy Economics, Elsevier, vol. 24(2), pages 107-119, March.
    15. Hillard G. Huntington, 1994. "Oil Price Forecasting in the 1980s: What Went Wrong?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-22.
    16. Hache, Emmanuel & Lantz, Frédéric, 2013. "Speculative trading and oil price dynamic: A study of the WTI market," Energy Economics, Elsevier, vol. 36(C), pages 334-340.
    17. Sanders, Dwight R. & Boris, Keith & Manfredo, Mark, 2004. "Hedgers, funds, and small speculators in the energy futures markets: an analysis of the CFTC's Commitments of Traders reports," Energy Economics, Elsevier, vol. 26(3), pages 425-445, May.
    18. Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
    19. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    20. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    21. Ramsay, Kristopher W., 2011. "Revisiting the Resource Curse: Natural Disasters, the Price of Oil, and Democracy," International Organization, Cambridge University Press, vol. 65(3), pages 507-529, July.
    22. Zhang, Yue-Jun & Fan, Ying & Tsai, Hsien-Tang & Wei, Yi-Ming, 2008. "Spillover effect of US dollar exchange rate on oil prices," Journal of Policy Modeling, Elsevier, vol. 30(6), pages 973-991.
    23. Chen, Yanhui & He, Kaijian & Zhang, Chuan, 2016. "A novel grey wave forecasting method for predicting metal prices," Resources Policy, Elsevier, vol. 49(C), pages 323-331.
    24. Xian, Lu & He, Kaijian & Lai, Kin Keung, 2016. "Gold price analysis based on ensemble empirical model decomposition and independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 11-23.
    25. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    26. Fan, Ying & Liang, Qiang & Wei, Yi-Ming, 2008. "A generalized pattern matching approach for multi-step prediction of crude oil price," Energy Economics, Elsevier, vol. 30(3), pages 889-904, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    2. Öztunç Kaymak, Öznur & Kaymak, Yiğit, 2022. "Prediction of crude oil prices in COVID-19 outbreak using real data," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Yu, Hongchu & Fang, Zhixiang & Lu, Feng & Murray, Alan T. & Zhang, Hengcai & Peng, Peng & Mei, Qiang & Chen, Jinhai, 2019. "Impact of oil price fluctuations on tanker maritime network structure and traffic flow changes," Applied Energy, Elsevier, vol. 237(C), pages 390-403.
    4. Li, Ranran & Hu, Yucai & Heng, Jiani & Chen, Xueli, 2021. "A novel multiscale forecasting model for crude oil price time series," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    5. Li, Guohui & Yin, Shibo & Yang, Hong, 2022. "A novel crude oil prices forecasting model based on secondary decomposition," Energy, Elsevier, vol. 257(C).
    6. Jiang Wu & Feng Miu & Taiyong Li, 2020. "Daily Crude Oil Price Forecasting Based on Improved CEEMDAN, SCA, and RVFL: A Case Study in WTI Oil Market," Energies, MDPI, vol. 13(7), pages 1-20, April.
    7. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    8. Butler, Sunil & Kokoszka, Piotr & Miao, Hong & Shang, Han Lin, 2021. "Neural network prediction of crude oil futures using B-splines," Energy Economics, Elsevier, vol. 94(C).
    9. Wang, Zheng-Xin & Li, Dan-Dan & Zheng, Hong-Hao, 2020. "Model comparison of GM(1,1) and DGM(1,1) based on Monte-Carlo simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    10. Yin, Libo & Wang, Yang, 2019. "Forecasting the oil prices: What is the role of skewness risk?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    11. Yingchao Zou & Kaijian He, 2022. "Forecasting Crude Oil Risk Using a Multivariate Multiscale Convolutional Neural Network Model," Mathematics, MDPI, vol. 10(14), pages 1-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Yishan, 2018. "A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting," Energy, Elsevier, vol. 154(C), pages 328-336.
    2. Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
    3. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    4. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
    5. Xie Haibin & Zhou Mo & Yu Mei & Hu Yi, 2014. "Forecasting the Crude Oil Price with Extreme Values," Journal of Systems Science and Information, De Gruyter, vol. 2(3), pages 193-205, June.
    6. Piersanti, Giovanni & Piersanti, Mirko & Cicone, Antonio & Canofari, Paolo & Di Domizio, Marco, 2020. "An inquiry into the structure and dynamics of crude oil price using the fast iterative filtering algorithm," Energy Economics, Elsevier, vol. 92(C).
    7. Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
    8. Manel Hamdi & Chaker Aloui, 2015. "Forecasting Crude Oil Price Using Artificial Neural Networks: A Literature Survey," Economics Bulletin, AccessEcon, vol. 35(2), pages 1339-1359.
    9. Zhang, Xun & Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method," Energy Economics, Elsevier, vol. 31(5), pages 768-778, September.
    10. Cheng, Fangzheng & Li, Tian & Wei, Yi-ming & Fan, Tijun, 2019. "The VEC-NAR model for short-term forecasting of oil prices," Energy Economics, Elsevier, vol. 78(C), pages 656-667.
    11. Taiyong Li & Min Zhou & Chaoqi Guo & Min Luo & Jiang Wu & Fan Pan & Quanyi Tao & Ting He, 2016. "Forecasting Crude Oil Price Using EEMD and RVM with Adaptive PSO-Based Kernels," Energies, MDPI, vol. 9(12), pages 1-21, December.
    12. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    13. Ai Han & Yanan He & Yongmiao Hong & Shouyang Wang, 2013. "Forecasting Interval-valued Crude Oil Prices via Autoregressive Conditional Interval Models," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    14. Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).
    15. Marcos Álvarez-Díaz, 2020. "Is it possible to accurately forecast the evolution of Brent crude oil prices? An answer based on parametric and nonparametric forecasting methods," Empirical Economics, Springer, vol. 59(3), pages 1285-1305, September.
    16. E, Jianwei & Bao, Yanling & Ye, Jimin, 2017. "Crude oil price analysis and forecasting based on variational mode decomposition and independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 412-427.
    17. Qin, Quande & Xie, Kangqiang & He, Huangda & Li, Li & Chu, Xianghua & Wei, Yi-Ming & Wu, Teresa, 2019. "An effective and robust decomposition-ensemble energy price forecasting paradigm with local linear prediction," Energy Economics, Elsevier, vol. 83(C), pages 402-414.
    18. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    19. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
    20. Fan, Ying & Xu, Jin-Hua, 2011. "What has driven oil prices since 2000? A structural change perspective," Energy Economics, Elsevier, vol. 33(6), pages 1082-1094.

    More about this item

    Keywords

    Crude oil price forecasting; Grey wave forecasting model; Graphical prediction model; Hybrid model;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q49 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:501:y:2018:i:c:p:98-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.