Daily Crude Oil Price Forecasting Based on Improved CEEMDAN, SCA, and RVFL: A Case Study in WTI Oil Market
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bangzhu Zhu & Xuetao Shi & Julien Chevallier & Ping Wang & Yi‐Ming Wei, 2016.
"An Adaptive Multiscale Ensemble Learning Paradigm for Nonstationary and Nonlinear Energy Price Time Series Forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 633-651, November.
- Bangzhu Zhu & Xuetao Shi & Julien Chevallier & Ping Wang & Yi-Ming Wei, 2016. "An Adaptive Multiscale Ensemble Learning Paradigm for Nonstationary and Nonlinear Energy Price Time Series Forecasting," Working Papers 2016-004, Department of Research, Ipag Business School.
- Santosh Kumar Majhi, 2018. "An Efficient Feed Foreword Network Model with Sine Cosine Algorithm for Breast Cancer Classification," International Journal of System Dynamics Applications (IJSDA), IGI Global, vol. 7(2), pages 1-14, April.
- Zhao, Yang & Li, Jianping & Yu, Lean, 2017. "A deep learning ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 9-16.
- Jiang Wu & Yu Chen & Tengfei Zhou & Taiyong Li, 2019. "An Adaptive Hybrid Learning Paradigm Integrating CEEMD, ARIMA and SBL for Crude Oil Price Forecasting," Energies, MDPI, vol. 12(7), pages 1-23, April.
- Li Shu-rong & Ge Yu-lei, 2013. "Crude Oil Price Prediction Based on a Dynamic Correcting Support Vector Regression Machine," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-7, March.
- Xinsheng Li & Zhilong Xie & Jiang Wu & Taiyong Li, 2019. "Image Encryption Based on Dynamic Filtering and Bit Cuboid Operations," Complexity, Hindawi, vol. 2019, pages 1-16, February.
- Chen, Yanhui & Zhang, Chuan & He, Kaijian & Zheng, Aibing, 2018. "Multi-step-ahead crude oil price forecasting using a hybrid grey wave model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 98-110.
- Siddhivinayak Kulkarni & Imad Haidar, 2009. "Forecasting Model for Crude Oil Price Using Artificial Neural Networks and Commodity Futures Prices," Papers 0906.4838, arXiv.org.
- Mingming, Tang & Jinliang, Zhang, 2012. "A multiple adaptive wavelet recurrent neural network model to analyze crude oil prices," Journal of Economics and Business, Elsevier, vol. 64(4), pages 275-286.
- Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
- Taiyong Li & Zhenda Hu & Yanchi Jia & Jiang Wu & Yingrui Zhou, 2018. "Forecasting Crude Oil Prices Using Ensemble Empirical Mode Decomposition and Sparse Bayesian Learning," Energies, MDPI, vol. 11(7), pages 1-23, July.
- de Souza e Silva, Edmundo G. & Legey, Luiz F.L. & de Souza e Silva, Edmundo A., 2010. "Forecasting oil price trends using wavelets and hidden Markov models," Energy Economics, Elsevier, vol. 32(6), pages 1507-1519, November.
- Taiyong Li & Zijie Qian & Ting He, 2020. "Short-Term Load Forecasting with Improved CEEMDAN and GWO-Based Multiple Kernel ELM," Complexity, Hindawi, vol. 2020, pages 1-20, February.
- Yejing Bao & Xun Zhang & Lean Yu & Kin Keung Lai & Shouyang Wang, 2011. "An Integrated Model Using Wavelet Decomposition And Least Squares Support Vector Machines For Monthly Crude Oil Prices Forecasting," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 299-311.
- Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
- Mostafa, Mohamed M. & El-Masry, Ahmed A., 2016. "Oil price forecasting using gene expression programming and artificial neural networks," Economic Modelling, Elsevier, vol. 54(C), pages 40-53.
- Sepehr Ramyar & Farhad Kianfar, 2019. "Forecasting Crude Oil Prices: A Comparison Between Artificial Neural Networks and Vector Autoregressive Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 743-761, February.
- Taiyong Li & Yingrui Zhou & Xinsheng Li & Jiang Wu & Ting He, 2019. "Forecasting Daily Crude Oil Prices Using Improved CEEMDAN and Ridge Regression-Based Predictors," Energies, MDPI, vol. 12(19), pages 1-25, September.
- Lanza, Alessandro & Manera, Matteo & Giovannini, Massimo, 2005. "Modeling and forecasting cointegrated relationships among heavy oil and product prices," Energy Economics, Elsevier, vol. 27(6), pages 831-848, November.
- Taiyong Li & Min Zhou & Chaoqi Guo & Min Luo & Jiang Wu & Fan Pan & Quanyi Tao & Ting He, 2016. "Forecasting Crude Oil Price Using EEMD and RVM with Adaptive PSO-Based Kernels," Energies, MDPI, vol. 9(12), pages 1-21, December.
- Wang, Jue & Athanasopoulos, George & Hyndman, Rob J. & Wang, Shouyang, 2018. "Crude oil price forecasting based on internet concern using an extreme learning machine," International Journal of Forecasting, Elsevier, vol. 34(4), pages 665-677.
- Taiyong Li & Minggao Yang & Jiang Wu & Xin Jing, 2017. "A Novel Image Encryption Algorithm Based on a Fractional-Order Hyperchaotic System and DNA Computing," Complexity, Hindawi, vol. 2017, pages 1-13, November.
- Yingrui Zhou & Taiyong Li & Jiayi Shi & Zijie Qian, 2019. "A CEEMDAN and XGBOOST-Based Approach to Forecast Crude Oil Prices," Complexity, Hindawi, vol. 2019, pages 1-15, February.
- Kaijian He & Rui Zha & Jun Wu & Kin Keung Lai, 2016. "Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Radosław Puka & Bartosz Łamasz & Marek Michalski, 2021. "Effectiveness of Artificial Neural Networks in Hedging against WTI Crude Oil Price Risk," Energies, MDPI, vol. 14(11), pages 1-26, June.
- Arash Sioofy Khoojine & Mahboubeh Shadabfar & Yousef Edrisi Tabriz, 2022. "A Mutual Information-Based Network Autoregressive Model for Crude Oil Price Forecasting Using Open-High-Low-Close Prices," Mathematics, MDPI, vol. 10(17), pages 1-20, September.
- Radosław Puka & Bartosz Łamasz, 2020. "Using Artificial Neural Networks to Find Buy Signals for WTI Crude Oil Call Options," Energies, MDPI, vol. 13(17), pages 1-20, August.
- Guo, Jingjun & Zhao, Zhengling & Sun, Jingyun & Sun, Shaolong, 2022. "Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework," Resources Policy, Elsevier, vol. 77(C).
- Krzysztof Drachal, 2022. "Forecasting the Crude Oil Spot Price with Bayesian Symbolic Regression," Energies, MDPI, vol. 16(1), pages 1-29, December.
- Kais Tissaoui & Taha Zaghdoudi & Abdelaziz Hakimi & Mariem Nsaibi, 2023. "Do Gas Price and Uncertainty Indices Forecast Crude Oil Prices? Fresh Evidence Through XGBoost Modeling," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 663-687, August.
- Yuriy Bilan & Serhiy Kozmenko & Alex Plastun, 2022. "Price Forecasting in Energy Market," Energies, MDPI, vol. 15(24), pages 1-6, December.
- Kais Tissaoui & Taha Zaghdoudi & Abdelaziz Hakimi & Ousama Ben-Salha & Lamia Ben Amor, 2022. "Does Uncertainty Forecast Crude Oil Volatility before and during the COVID-19 Outbreak? Fresh Evidence Using Machine Learning Models," Energies, MDPI, vol. 15(15), pages 1-20, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiang Wu & Yu Chen & Tengfei Zhou & Taiyong Li, 2019. "An Adaptive Hybrid Learning Paradigm Integrating CEEMD, ARIMA and SBL for Crude Oil Price Forecasting," Energies, MDPI, vol. 12(7), pages 1-23, April.
- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Li, Guohui & Yin, Shibo & Yang, Hong, 2022. "A novel crude oil prices forecasting model based on secondary decomposition," Energy, Elsevier, vol. 257(C).
- Guo, Jingjun & Zhao, Zhengling & Sun, Jingyun & Sun, Shaolong, 2022. "Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework," Resources Policy, Elsevier, vol. 77(C).
- Taiyong Li & Yingrui Zhou & Xinsheng Li & Jiang Wu & Ting He, 2019. "Forecasting Daily Crude Oil Prices Using Improved CEEMDAN and Ridge Regression-Based Predictors," Energies, MDPI, vol. 12(19), pages 1-25, September.
- Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
- Radosław Puka & Bartosz Łamasz & Marek Michalski, 2021. "Effectiveness of Artificial Neural Networks in Hedging against WTI Crude Oil Price Risk," Energies, MDPI, vol. 14(11), pages 1-26, June.
- Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
- Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
- Chai, Jian & Xing, Li-Min & Zhou, Xiao-Yang & Zhang, Zhe George & Li, Jie-Xun, 2018. "Forecasting the WTI crude oil price by a hybrid-refined method," Energy Economics, Elsevier, vol. 71(C), pages 114-127.
- Radosław Puka & Bartosz Łamasz, 2020. "Using Artificial Neural Networks to Find Buy Signals for WTI Crude Oil Call Options," Energies, MDPI, vol. 13(17), pages 1-20, August.
- Zhang, Tingting & Tang, Zhenpeng & Wu, Junchuan & Du, Xiaoxu & Chen, Kaijie, 2021. "Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm," Energy, Elsevier, vol. 229(C).
- Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
- Hosseini, Seyed Hossein & Shakouri G., Hamed & Kazemi, Aliyeh, 2021. "Oil price future regarding unconventional oil production and its near-term deployment: A system dynamics approach," Energy, Elsevier, vol. 222(C).
- Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
- Wu, Chunying & Wang, Jianzhou & Hao, Yan, 2022. "Deterministic and uncertainty crude oil price forecasting based on outlier detection and modified multi-objective optimization algorithm," Resources Policy, Elsevier, vol. 77(C).
- Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
- Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
- Butler, Sunil & Kokoszka, Piotr & Miao, Hong & Shang, Han Lin, 2021. "Neural network prediction of crude oil futures using B-splines," Energy Economics, Elsevier, vol. 94(C).
- Zhaojie Luo & Xiaojing Cai & Katsuyuki Tanaka & Tetsuya Takiguchi & Takuji Kinkyo & Shigeyuki Hamori, 2019. "Can We Forecast Daily Oil Futures Prices? Experimental Evidence from Convolutional Neural Networks," JRFM, MDPI, vol. 12(1), pages 1-13, January.
More about this item
Keywords
crude oil prices forecasting; decomposition and ensemble; improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN); sine cosine algorithm (SCA); random vector functional link (RVFL) neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1852-:d:344122. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.