IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7485621.html
   My bibliography  Save this article

Image Encryption Based on Dynamic Filtering and Bit Cuboid Operations

Author

Listed:
  • Xinsheng Li
  • Zhilong Xie
  • Jiang Wu
  • Taiyong Li

Abstract

As one of the most widely used media types, images play an important role in the era of the Internet. And hence how to enhance the security of images has become a hot topic in the field of information security. However, due to some intrinsic characteristics of images, image security is still a challenging task. For the purpose of coping with this issue, in this paper, we propose a novel algorithm that combines a hyperchaotic system, dynamic filtering, and bit cuboid operations, namely, DFBC, for image encryption. Specifically, the proposed DFBC consists of four steps: firstly, a 7D Lorenz hyperchaotic system is utilized to generate a pseudorandom sequence; secondly, variable 1D filters are derived from the pseudorandom sequence, and dynamic filtering is conducted on each pixel of an image; thirdly, a diffusion scheme is performed and then the image is transformed to a bit cuboid; and, finally, various types of permutation (rearranging, symmetry, rotation, zigzag, and global bit permutation) are performed on the bit cuboid. The experiments on several testing images demonstrate that the DFBC achieves state-of-the-art results in terms of several evaluation criteria, showing that the DFBC is promising for image encryption.

Suggested Citation

  • Xinsheng Li & Zhilong Xie & Jiang Wu & Taiyong Li, 2019. "Image Encryption Based on Dynamic Filtering and Bit Cuboid Operations," Complexity, Hindawi, vol. 2019, pages 1-16, February.
  • Handle: RePEc:hin:complx:7485621
    DOI: 10.1155/2019/7485621
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/7485621.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/7485621.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/7485621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinsheng Li & Taiyong Li & Jiang Wu & Zhilong Xie & Jiayi Shi, 2019. "Joint image compression and encryption based on sparse Bayesian learning and bit-level 3D Arnold cat maps," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-29, November.
    2. Bowen Zhang & Lingfeng Liu, 2023. "Chaos-Based Image Encryption: Review, Application, and Challenges," Mathematics, MDPI, vol. 11(11), pages 1-39, June.
    3. Wang, Xingyuan & Du, Xiaohui, 2022. "Pixel-level and bit-level image encryption method based on Logistic-Chebyshev dynamic coupled map lattices," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. Jiang Wu & Feng Miu & Taiyong Li, 2020. "Daily Crude Oil Price Forecasting Based on Improved CEEMDAN, SCA, and RVFL: A Case Study in WTI Oil Market," Energies, MDPI, vol. 13(7), pages 1-20, April.
    5. Wang, Xingyuan & Chen, Xuan, 2021. "An image encryption algorithm based on dynamic row scrambling and Zigzag transformation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7485621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.