Effective Crude Oil Prediction Using CHS-EMD Decomposition and PS-RNN Model
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-023-10460-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Jue & Zhou, Hao & Hong, Tao & Li, Xiang & Wang, Shouyang, 2020. "A multi-granularity heterogeneous combination approach to crude oil price forecasting," Energy Economics, Elsevier, vol. 91(C).
- Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
- Chen, Yanhui & Zhang, Chuan & He, Kaijian & Zheng, Aibing, 2018. "Multi-step-ahead crude oil price forecasting using a hybrid grey wave model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 98-110.
- Chiroma, Haruna & Abdulkareem, Sameem & Herawan, Tutut, 2015. "Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction," Applied Energy, Elsevier, vol. 142(C), pages 266-273.
- Yang, Lu, 2019. "Connectedness of economic policy uncertainty and oil price shocks in a time domain perspective," Energy Economics, Elsevier, vol. 80(C), pages 219-233.
- Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
- Chai, Jian & Xing, Li-Min & Zhou, Xiao-Yang & Zhang, Zhe George & Li, Jie-Xun, 2018. "Forecasting the WTI crude oil price by a hybrid-refined method," Energy Economics, Elsevier, vol. 71(C), pages 114-127.
- Cen, Zhongpei & Wang, Jun, 2019. "Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer," Energy, Elsevier, vol. 169(C), pages 160-171.
- Huang, Lili & Wang, Jun, 2018. "Global crude oil price prediction and synchronization based accuracy evaluation using random wavelet neural network," Energy, Elsevier, vol. 151(C), pages 875-888.
- Hualing Lin & Qiubi Sun, 2020. "Crude Oil Prices Forecasting: An Approach of Using CEEMDAN-Based Multi-Layer Gated Recurrent Unit Networks," Energies, MDPI, vol. 13(7), pages 1-21, March.
- Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
- Ding, Yishan, 2018. "A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting," Energy, Elsevier, vol. 154(C), pages 328-336.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
- Butler, Sunil & Kokoszka, Piotr & Miao, Hong & Shang, Han Lin, 2021. "Neural network prediction of crude oil futures using B-splines," Energy Economics, Elsevier, vol. 94(C).
- He, Huizi & Sun, Mei & Li, Xiuming & Mensah, Isaac Adjei, 2022. "A novel crude oil price trend prediction method: Machine learning classification algorithm based on multi-modal data features," Energy, Elsevier, vol. 244(PA).
- Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
- Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
- Jha, Nimish & Kumar Tanneru, Hemanth & Palla, Sridhar & Hussain Mafat, Iradat, 2024. "Multivariate analysis and forecasting of the crude oil prices: Part I – Classical machine learning approaches," Energy, Elsevier, vol. 296(C).
- Wu, Chunying & Wang, Jianzhou & Hao, Yan, 2022. "Deterministic and uncertainty crude oil price forecasting based on outlier detection and modified multi-objective optimization algorithm," Resources Policy, Elsevier, vol. 77(C).
- Li, Ranran & Hu, Yucai & Heng, Jiani & Chen, Xueli, 2021. "A novel multiscale forecasting model for crude oil price time series," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
- Zhao, Yuan & Zhang, Weiguo & Gong, Xue & Wang, Chao, 2021. "A novel method for online real-time forecasting of crude oil price," Applied Energy, Elsevier, vol. 303(C).
- Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
- Zhao, Zhengling & Sun, Shaolong & Sun, Jingyun & Wang, Shouyang, 2024. "A novel hybrid model with two-layer multivariate decomposition for crude oil price forecasting," Energy, Elsevier, vol. 288(C).
- Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
- Radosław Puka & Bartosz Łamasz & Marek Michalski, 2021. "Effectiveness of Artificial Neural Networks in Hedging against WTI Crude Oil Price Risk," Energies, MDPI, vol. 14(11), pages 1-26, June.
- Jiangwei Liu & Xiaohong Huang, 2021. "Forecasting Crude Oil Price Using Event Extraction," Papers 2111.09111, arXiv.org.
- Asit Kumar Das & Debahuti Mishra & Kaberi Das & Pradeep Kumar Mallick & Sachin Kumar & Mikhail Zymbler & Hesham El-Sayed, 2022. "Prophesying the Short-Term Dynamics of the Crude Oil Future Price by Adopting the Survival of the Fittest Principle of Improved Grey Optimization and Extreme Learning Machine," Mathematics, MDPI, vol. 10(7), pages 1-33, March.
- Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).
- Zheng, Li & Sun, Yuying & Wang, Shouyang, 2024. "A novel interval-based hybrid framework for crude oil price forecasting and trading," Energy Economics, Elsevier, vol. 130(C).
- Liu, Zhenya & Teka, Hanen & You, Rongyu, 2023. "Conditional autoencoder pricing model for energy commodities," Resources Policy, Elsevier, vol. 86(PA).
- Li, Jingmiao & Wang, Jun, 2020. "Forcasting of energy futures market and synchronization based on stochastic gated recurrent unit model," Energy, Elsevier, vol. 213(C).
- Yu, Hongchu & Fang, Zhixiang & Lu, Feng & Murray, Alan T. & Zhang, Hengcai & Peng, Peng & Mei, Qiang & Chen, Jinhai, 2019. "Impact of oil price fluctuations on tanker maritime network structure and traffic flow changes," Applied Energy, Elsevier, vol. 237(C), pages 390-403.
More about this item
Keywords
Crude oil; Cubic hermite spline based on empirical mode decomposition (CHS-EMD); Gaussian distribution-based Aquila optimization (GD-AO); Polyharmonic spline based recurrent neural network (PS-RNN); Simple moving average (SMA); Exponential moving average (EMA);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:2:d:10.1007_s10614-023-10460-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.