IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipbs0306261923015337.html
   My bibliography  Save this article

De-Trend First, Attend Next: A Mid-Term PV forecasting system with attention mechanism and encoder–decoder structure

Author

Listed:
  • Niu, Yunbo
  • Wang, Jianzhou
  • Zhang, Ziyuan
  • Luo, Tianrui
  • Liu, Jingjiang

Abstract

Performing accurate predictions on photovoltaic power generation is a crucial factor in complementary power generation scheduling. How to resolve the problem of extracting hidden features and correcting abnormal data is the key factor of improving mid-term prediction accuracy. This study proposes a mid-term PV forecasting system using the De-Trend First, Attend Next strategy. The prediction system employs the detrending before attending strategy. It first adopts and corrects abnormal time series data, and then reconstructs the corrected time series data into trend and seasonal components. After data is constructed, different models are applied to trend and seasonal data for separately predictions, and such predictions then be reconstructed into a realistic prediction result. To find hidden features and seasonal trends of seasonal components, we propose a new model. This model is constructed with an encoder–decoder structure temporal convolution, and attention mechanism. This study evaluates the prediction system using data from a photovoltaic power station in Australia. The experimental results show that the proposed model has a Coefficient of Determination value of 0.992, which represents a 73% improvement in the mean squared error index compared to the baseline model. In summary, the experiment result demonstrates that the system has a good capability of providing and predicting accurate data, which plays a significant role in power grid dispatch.

Suggested Citation

  • Niu, Yunbo & Wang, Jianzhou & Zhang, Ziyuan & Luo, Tianrui & Liu, Jingjiang, 2024. "De-Trend First, Attend Next: A Mid-Term PV forecasting system with attention mechanism and encoder–decoder structure," Applied Energy, Elsevier, vol. 353(PB).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015337
    DOI: 10.1016/j.apenergy.2023.122169
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923015337
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.