IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v394y2025ics0306261925008347.html

Amplify seasonality, prioritize meteorological: Strengthening seasonal correlation in photovoltaic forecasting with dual-layer hierarchical attention

Author

Listed:
  • Niu, Yunbo
  • Wang, Jianzhou
  • Zhang, Ziyuan
  • Cao, Yisheng
  • Yan, Pengfei
  • Li, Zhiwu

Abstract

Overloading beyond the grid’s capacity poses a serious threat to grid security. In 2023, photovoltaic power generation accounted for 75 % of the total increase in renewable energy generation. However, due to the significant fluctuations in photovoltaic power output, forecasting photovoltaic generation has become a crucial tool for ensuring grid security. A key challenge in practical applications remains the deep mining of hidden features in photovoltaic data and their correlation with meteorological data to improve prediction accuracy. To address this, this study proposes a photovoltaic prediction strategy called “Amplify Seasonality, Prioritize Meteorological". This strategy aims to leverage meteorological information to connect with the seasonal component of photovoltaic power data while preventing meteorological factors from affecting the trend component, thereby effectively reducing the impact of short-term seasonal meteorological fluctuations on the trend component of photovoltaic data. Additionally, this study proposes a seasonal component prediction unit with a dual-layer hierarchical attention mechanism, which enhances the focus on the connections between meteorological features, key time nodes, and the seasonal component. These innovations enable the proposed AspmNet model to achieve superior prediction accuracy. The model was validated using Australian photovoltaic data through experiments with forecast lengths of 1 day, 2 days, and 4 days. In terms of Mean Absolute Error, the model demonstrated over a 10 % improvement compared to other benchmark models.

Suggested Citation

  • Niu, Yunbo & Wang, Jianzhou & Zhang, Ziyuan & Cao, Yisheng & Yan, Pengfei & Li, Zhiwu, 2025. "Amplify seasonality, prioritize meteorological: Strengthening seasonal correlation in photovoltaic forecasting with dual-layer hierarchical attention," Applied Energy, Elsevier, vol. 394(C).
  • Handle: RePEc:eee:appene:v:394:y:2025:i:c:s0306261925008347
    DOI: 10.1016/j.apenergy.2025.126104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925008347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ajith, Meenu & Martínez-Ramón, Manel, 2021. "Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data," Applied Energy, Elsevier, vol. 294(C).
    2. Wang, Yuhan & Zhang, Chu & Fu, Yongyan & Suo, Leiming & Song, Shihao & Peng, Tian & Shahzad Nazir, Muhammad, 2023. "Hybrid solar radiation forecasting model with temporal convolutional network using data decomposition and improved artificial ecosystem-based optimization algorithm," Energy, Elsevier, vol. 280(C).
    3. Qing, Xiangyun & Niu, Yugang, 2018. "Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM," Energy, Elsevier, vol. 148(C), pages 461-468.
    4. Li, Jingrui & Wang, Jiyang & Li, Zhiwu, 2023. "A novel combined forecasting system based on advanced optimization algorithm - A study on optimal interval prediction of wind speed," Energy, Elsevier, vol. 264(C).
    5. Cao, Yisheng & Liu, Gang & Luo, Donghua & Bavirisetti, Durga Prasad & Xiao, Gang, 2023. "Multi-timescale photovoltaic power forecasting using an improved Stacking ensemble algorithm based LSTM-Informer model," Energy, Elsevier, vol. 283(C).
    6. Tao, Kejun & Zhao, Jinghao & Tao, Ye & Qi, Qingqing & Tian, Yajun, 2024. "Operational day-ahead photovoltaic power forecasting based on transformer variant," Applied Energy, Elsevier, vol. 373(C).
    7. Li, Jingrui & Wang, Jianzhou & Zhang, Haipeng & Li, Zhiwu, 2022. "An innovative combined model based on multi-objective optimization approach for forecasting short-term wind speed: A case study in China," Renewable Energy, Elsevier, vol. 201(P1), pages 766-779.
    8. AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
    9. Niu, Yunbo & Wang, Jianzhou & Zhang, Ziyuan & Luo, Tianrui & Liu, Jingjiang, 2024. "De-Trend First, Attend Next: A Mid-Term PV forecasting system with attention mechanism and encoder–decoder structure," Applied Energy, Elsevier, vol. 353(PB).
    10. Li, Yanting & He, Yong & Su, Yan & Shu, Lianjie, 2016. "Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines," Applied Energy, Elsevier, vol. 180(C), pages 392-401.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jun & Zhang, Yagang & Liu, Ke & Zhao, Chunyang, 2025. "Multi-step prediction of spatio-temporal wind speed based on the multimodal coupled ST-DFNet model," Energy, Elsevier, vol. 334(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Zhirui & Liang, Bingjie, 2025. "PVMTF: End-to-end long-sequence time-series forecasting frameworks based on patch technique and information fusion coding for mid-term photovoltaic power forecasting," Applied Energy, Elsevier, vol. 396(C).
    2. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    3. Ajith, Meenu & Martínez-Ramón, Manel, 2023. "Deep learning algorithms for very short term solar irradiance forecasting: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Wang, Lining & Mao, Mingxuan & Xie, Jili & Liao, Zheng & Zhang, Hao & Li, Huanxin, 2023. "Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model," Energy, Elsevier, vol. 262(PB).
    5. Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
    6. Kelachukwu J. Iheanetu, 2022. "Solar Photovoltaic Power Forecasting: A Review," Sustainability, MDPI, vol. 14(24), pages 1-31, December.
    7. Wang, Shuangxin & Shi, Jiarong & Yang, Wei & Yin, Qingyan, 2024. "High and low frequency wind power prediction based on Transformer and BiGRU-Attention," Energy, Elsevier, vol. 288(C).
    8. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Li, Hao & Ma, Gang & Wang, Bo & Wang, Shu & Li, Wenhao & Meng, Yuxiang, 2025. "Multi-modal feature fusion model based on TimesNet and T2T-ViT for ultra-short-term solar irradiance forecasting," Renewable Energy, Elsevier, vol. 240(C).
    10. Zhong, Mingwei & Xu, Cancheng & Xian, Zikang & He, Guanglin & Zhai, Yanpeng & Zhou, Yongwang & Fan, Jingmin, 2024. "DTTM: A deep temporal transfer model for ultra-short-term online wind power forecasting," Energy, Elsevier, vol. 286(C).
    11. Deng, Ruizhe & Wang, Yiming & Xu, Po & Luo, Futao & Chen, Qi & Zhang, Haoran & Chen, Yuntian & Zhang, Dongxiao, 2025. "A high-precision photovoltaic power forecasting model leveraging low-fidelity data through decoupled informer with multi-moment guidance," Renewable Energy, Elsevier, vol. 250(C).
    12. Liu, Weican & Gai, Mei, 2025. "PV-MLP: A lightweight patch-based multi-layer perceptron network with time–frequency domain fusion for accurate long-sequence photovoltaic power forecasting," Renewable Energy, Elsevier, vol. 251(C).
    13. Feng, Zhengkun & Shen, Jun & Zhou, Qingguo & Hu, Xingchen & Yong, Binbin, 2025. "Hierarchical gated pooling and progressive feature fusion for short-term PV power forecasting," Renewable Energy, Elsevier, vol. 247(C).
    14. Li, Guozhu & Ding, Chenjun & Zhao, Naini & Wei, Jiaxing & Guo, Yang & Meng, Chong & Huang, Kailiang & Zhu, Rongxin, 2024. "Research on a novel photovoltaic power forecasting model based on parallel long and short-term time series network," Energy, Elsevier, vol. 293(C).
    15. Athanasios I. Salamanis & Georgia Xanthopoulou & Napoleon Bezas & Christos Timplalexis & Angelina D. Bintoudi & Lampros Zyglakis & Apostolos C. Tsolakis & Dimosthenis Ioannidis & Dionysios Kehagias & , 2020. "Benchmark Comparison of Analytical, Data-Based and Hybrid Models for Multi-Step Short-Term Photovoltaic Power Generation Forecasting," Energies, MDPI, vol. 13(22), pages 1-31, November.
    16. Zhang, Ruoyang & Wu, Yu & Zhang, Lei & Xu, Chongbin & Wang, ZeYu & Zhang, Yanfeng & Sun, Xiaomin & Zuo, Xin & Wu, Yuhan & Chen, Qian, 2025. "A multiscale network with mixed features and extended regional weather forecasts for predicting short-term photovoltaic power," Energy, Elsevier, vol. 318(C).
    17. Xilong Lin & Yisen Niu & Zixuan Yan & Lianglin Zou & Ping Tang & Jifeng Song, 2024. "Hybrid Photovoltaic Output Forecasting Model with Temporal Convolutional Network Using Maximal Information Coefficient and White Shark Optimizer," Sustainability, MDPI, vol. 16(14), pages 1-20, July.
    18. Wang, Tao & Xu, Ye & Qin, Yu & Wang, Xu & Zheng, Feifan & Li, Wei, 2025. "Short-term PV forecasting of multiple scenarios based on multi-dimensional clustering and hybrid transformer-BiLSTM with ECPO," Energy, Elsevier, vol. 334(C).
    19. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    20. Tian, Zhirui & Liu, Weican & Zhang, Jiahao & Sun, Wenpu & Wu, Chenye, 2025. "EDformer family: End-to-end multi-task load forecasting frameworks for day-ahead economic dispatch," Applied Energy, Elsevier, vol. 383(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:394:y:2025:i:c:s0306261925008347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.