IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3252-d805068.html
   My bibliography  Save this article

Biogas Production and Microbial Communities of Mesophilic and Thermophilic Anaerobic Co-Digestion of Animal Manures and Food Wastes in Costa Rica

Author

Listed:
  • Mariana Murillo-Roos

    (Centro de Investigaciones Agronómicas (CIA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José 11501-2060, Costa Rica)

  • Lorena Uribe-Lorío

    (Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José 11501-2060, Costa Rica)

  • Paola Fuentes-Schweizer

    (Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José 11501-2060, Costa Rica)

  • Daniela Vidaurre-Barahona

    (Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José 11501-2060, Costa Rica)

  • Laura Brenes-Guillén

    (Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José 11501-2060, Costa Rica)

  • Ivannia Jiménez

    (Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José 11501-2060, Costa Rica)

  • Tatiana Arguedas

    (Centro de Investigaciones Agronómicas (CIA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José 11501-2060, Costa Rica)

  • Wei Liao

    (Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA)

  • Lidieth Uribe

    (Centro de Investigaciones Agronómicas (CIA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José 11501-2060, Costa Rica)

Abstract

Biomass generated from agricultural operations in Costa Rica represents an untapped renewable resource for bioenergy generation. This study investigated the effects of two temperatures and three mixture ratios of manures and food wastes on biogas production and microbial community structure. Increasing the amount of fruit and restaurant wastes in the feed mixture significantly enhanced the productivity of the systems (16% increase in the mesophilic systems and 41% in the thermophilic). The methane content of biogas was also favored at higher temperatures. Beta diversity analysis, based on high-throughput sequencing of 16S rRNA gene, showed that microbial communities of the thermophilic digestions were more similar to each other than the mesophilic digestions. Species richness of the thermophilic digestions was significantly greater than the corresponding mesophilic digestions (F = 40.08, p = 0.003). The mesophilic digesters were dominated by Firmicutes and Bacteroidetes while in thermophilic digesters, the phyla Firmicutes and Chloroflexi accounted for up to 90% of all sequences. Methanosarcina represented the key methanogen and was more abundant in thermophilic digestions. These results demonstrate that increasing digestion temperature and adding food wastes can alleviate the negative impact of low C:N ratios on anaerobic digestion.

Suggested Citation

  • Mariana Murillo-Roos & Lorena Uribe-Lorío & Paola Fuentes-Schweizer & Daniela Vidaurre-Barahona & Laura Brenes-Guillén & Ivannia Jiménez & Tatiana Arguedas & Wei Liao & Lidieth Uribe, 2022. "Biogas Production and Microbial Communities of Mesophilic and Thermophilic Anaerobic Co-Digestion of Animal Manures and Food Wastes in Costa Rica," Energies, MDPI, vol. 15(9), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3252-:d:805068
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3252/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3252/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhong, Yuan & Chen, Rui & Rojas-Sossa, Juan-Pablo & Isaguirre, Christine & Mashburn, Austin & Marsh, Terence & Liu, Yan & Liao, Wei, 2020. "Anaerobic co-digestion of energy crop and agricultural wastes to prepare uniform-format cellulosic feedstock for biorefining," Renewable Energy, Elsevier, vol. 147(P1), pages 1358-1370.
    2. Molinuevo-Salces, Beatriz & González-Fernández, Cristina & Gómez, Xiomar & García-González, María Cruz & Morán, Antonio, 2012. "Vegetable processing wastes addition to improve swine manure anaerobic digestion: Evaluation in terms of methane yield and SEM characterization," Applied Energy, Elsevier, vol. 91(1), pages 36-42.
    3. Westerholm, M. & Isaksson, S. & Karlsson Lindsjö, O. & Schnürer, A., 2018. "Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production," Applied Energy, Elsevier, vol. 226(C), pages 838-848.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ormaechea, P. & Castrillón, L. & Suárez-Peña, B. & Megido, L. & Fernández-Nava, Y. & Negral, L. & Marañón, E. & Rodríguez-Iglesias, J., 2018. "Enhancement of biogas production from cattle manure pretreated and/or co-digested at pilot-plant scale. Characterization by SEM," Renewable Energy, Elsevier, vol. 126(C), pages 897-904.
    2. Andersson, Johanna & Helander-Claesson, Jonas & Olsson, Jesper, 2020. "Study on reduced process temperature for energy optimisation in mesophilic digestion: A lab to full-scale study," Applied Energy, Elsevier, vol. 271(C).
    3. Kovalovszki, Adam & Treu, Laura & Ellegaard, Lars & Luo, Gang & Angelidaki, Irini, 2020. "Modeling temperature response in bioenergy production: Novel solution to a common challenge of anaerobic digestion," Applied Energy, Elsevier, vol. 263(C).
    4. Takata, Miki & Fukushima, Kazuyo & Kawai, Minako & Nagao, Norio & Niwa, Chiaki & Yoshida, Teruaki & Toda, Tatsuki, 2013. "The choice of biological waste treatment method for urban areas in Japan—An environmental perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 557-567.
    5. Ma, Guiling & Chen, Yanting & Ndegwa, Pius, 2021. "Association between methane yield and microbiota abundance in the anaerobic digestion process: A meta-regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Lu, Zhihao & Yin, Di & Chen, Peng & Wang, Hongzhen & Yang, Yuhang & Huang, Guangtuan & Cai, Lankun & Zhang, Lehua, 2020. "Power-generating trees: Direct bioelectricity production from plants with microbial fuel cells," Applied Energy, Elsevier, vol. 268(C).
    7. Zheng, Zehui & Liu, Jinhuan & Yuan, Xufeng & Wang, Xiaofen & Zhu, Wanbin & Yang, Fuyu & Cui, Zongjun, 2015. "Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion," Applied Energy, Elsevier, vol. 151(C), pages 249-257.
    8. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    9. Yang, Sen & Liu, Ziduo, 2014. "Pilot-scale biodegradation of swine manure via Chrysomya megacephala (Fabricius) for biodiesel production," Applied Energy, Elsevier, vol. 113(C), pages 385-391.
    10. Ni, Ping & Lyu, Tao & Sun, Hao & Dong, Renjie & Wu, Shubiao, 2017. "Liquid digestate recycled utilization in anaerobic digestion of pig manure: Effect on methane production, system stability and heavy metal mobilization," Energy, Elsevier, vol. 141(C), pages 1695-1704.
    11. Elena Holl & Anastasia Oskina & Urs Baier & Andreas Lemmer, 2023. "Optimization of Thermodynamic Parameters of the Biological Hydrogen Methanation in a Trickle-Bed Reactor for the Conditioning of Biogas to Biomethane," Energies, MDPI, vol. 16(12), pages 1-13, June.
    12. Nie, Erqi & He, Pinjing & Zhang, Hua & Hao, Liping & Shao, Liming & Lü, Fan, 2021. "How does temperature regulate anaerobic digestion?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Jurado, Esperanza & Skiadas, Ioannis V. & Gavala, Hariklia N., 2013. "Enhanced methane productivity from manure fibers by aqueous ammonia soaking pretreatment," Applied Energy, Elsevier, vol. 109(C), pages 104-111.
    14. Peng, Xiaowei & Nges, Ivo Achu & Liu, Jing, 2016. "Improving methane production from wheat straw by digestate liquor recirculation in continuous stirred tank processes," Renewable Energy, Elsevier, vol. 85(C), pages 12-18.
    15. Susanne Theuerl & Johanna Klang & Annette Prochnow, 2019. "Process Disturbances in Agricultural Biogas Production—Causes, Mechanisms and Effects on the Biogas Microbiome: A Review," Energies, MDPI, vol. 12(3), pages 1-20, January.
    16. Silvestre, G. & Illa, J. & Fernández, B. & Bonmatí, A., 2014. "Thermophilic anaerobic co-digestion of sewage sludge with grease waste: Effect of long chain fatty acids in the methane yield and its dewatering properties," Applied Energy, Elsevier, vol. 117(C), pages 87-94.
    17. Shen, Xiuli & Huang, Guangqun & Yang, Zengling & Han, Lujia, 2015. "Compositional characteristics and energy potential of Chinese animal manure by type and as a whole," Applied Energy, Elsevier, vol. 160(C), pages 108-119.
    18. Zuo, Zhuang & Wu, Shubiao & Qi, Xiangyang & Dong, Renjie, 2015. "Performance enhancement of leaf vegetable waste in two-stage anaerobic systems under high organic loading rate: Role of recirculation and hydraulic retention time," Applied Energy, Elsevier, vol. 147(C), pages 279-286.
    19. Kafle, Gopi Krishna & Kim, Sang Hun, 2013. "Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation," Applied Energy, Elsevier, vol. 103(C), pages 61-72.
    20. Zhang, Wanqin & Wei, Quanyuan & Wu, Shubiao & Qi, Dandan & Li, Wei & Zuo, Zhuang & Dong, Renjie, 2014. "Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions," Applied Energy, Elsevier, vol. 128(C), pages 175-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3252-:d:805068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.