IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v245y2025ics0960148125004392.html
   My bibliography  Save this article

Inoculum dependence of methane formation from lignocellulosic biowastes

Author

Listed:
  • Oliva, Armando
  • Papirio, Stefano
  • Pirozzi, Francesco
  • Esposito, Giovanni
  • Lens, Piet N.L.

Abstract

Anaerobic digestion (AD) is a well-established process to produce methane from recalcitrant waste materials, such as lignocellulosic substrates (LSs). This study investigated the interaction between three LSs, i.e., hazelnut skin (HS), spent coffee grounds (SCG), and almond shells (AS), and different inocula, i.e., crushed granular sludge (CrGS), digestate from buffalo manure (DBM), and digestate from sewage sludge (DSS). The CrGS was the less suitable inoculum, resulting in 219.1 (±11.8) and 21.2 (±4.3) mL CH4/g VS from SCG and AS, respectively, whereas no methane was produced from HS with CrGS. A methanol-organosolv pretreatment improved the methane potential of SCG by 21 % and unlocked AD of HS with CrGS producing 289.6 (±9.9) mL CH4/g VS, but no significant effect was observed on AS. DSS was the best-performing inoculum to digest the investigated LSs, achieving similar results to DBM for HS and SCG, but increasing the methane potential of AS up to 90.7 (±4.3) mL CH4/g VS. DSS was particularly rich in microorganisms of the Synergistota (13.0 %) and Chloroflexi (25.0 %) phyla, which are capable of degrading complex biomolecules such as proteins and lipids present in HS, SCG, and AS.

Suggested Citation

  • Oliva, Armando & Papirio, Stefano & Pirozzi, Francesco & Esposito, Giovanni & Lens, Piet N.L., 2025. "Inoculum dependence of methane formation from lignocellulosic biowastes," Renewable Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:renene:v:245:y:2025:i:c:s0960148125004392
    DOI: 10.1016/j.renene.2025.122777
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125004392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:245:y:2025:i:c:s0960148125004392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.