IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v160y2015icp108-119.html
   My bibliography  Save this article

Compositional characteristics and energy potential of Chinese animal manure by type and as a whole

Author

Listed:
  • Shen, Xiuli
  • Huang, Guangqun
  • Yang, Zengling
  • Han, Lujia

Abstract

In this study, 838 representative animal manure samples were collected from 552 sites across China. Chemical analyses of 19 parameters, including the proximate analysis, ultimate analysis, heating values and some essential mineral elements, were conducted on the samples. The energy potential of animal manure in China was quantified based on the chemical analysis. The results showed that the chemical characteristics of the different types of animal manure were highly variable. Principal component analysis results demonstrated that the closest compositional characteristics were between dairy manure and beef manure. Several strong and important associations, namely phosphorus–magnesium, phosphorus–copper, phosphorus–zinc, copper–zinc, calcium–potassium, fixed carbon–calcium, volatile matter–iron and ash–volatile matter–fixed carbon–carbon–hydrogen–higher heating value–lower heating value, were identified. The calculated outputs of total potential annual thermal energy, syngas and methane yields from the five types of animal manure in China were 4400.63TJ, 983.40×109m3 and 188.89×109m3, respectively. The air gasifier energy conversion efficiency (t=850°C, equivalence ratio (ER)=0.3) for different animal manures was in the range of 66.80–83.22%.

Suggested Citation

  • Shen, Xiuli & Huang, Guangqun & Yang, Zengling & Han, Lujia, 2015. "Compositional characteristics and energy potential of Chinese animal manure by type and as a whole," Applied Energy, Elsevier, vol. 160(C), pages 108-119.
  • Handle: RePEc:eee:appene:v:160:y:2015:i:c:p:108-119
    DOI: 10.1016/j.apenergy.2015.09.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915011046
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.09.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molinuevo-Salces, Beatriz & González-Fernández, Cristina & Gómez, Xiomar & García-González, María Cruz & Morán, Antonio, 2012. "Vegetable processing wastes addition to improve swine manure anaerobic digestion: Evaluation in terms of methane yield and SEM characterization," Applied Energy, Elsevier, vol. 91(1), pages 36-42.
    2. Chico-Santamarta, Leticia & Godwin, Richard John & Chaney, Keith & White, David Richard & Humphries, Andrea Claire, 2013. "On-farm storage of baled and pelletized canola (Brassica napus L.) straw: Variations in the combustion related properties," Energy, Elsevier, vol. 50(C), pages 429-437.
    3. Ogejo, J.A. & Li, L., 2010. "Enhancing biomethane production from flush dairy manure with turkey processing wastewater," Applied Energy, Elsevier, vol. 87(10), pages 3171-3177, October.
    4. Molino, A. & Nanna, F. & Villone, A., 2014. "Characterization of biomasses in the southern Italy regions for their use in thermal processes," Applied Energy, Elsevier, vol. 131(C), pages 180-188.
    5. Camarillo, Mary Kay & Stringfellow, William T. & Hanlon, Jeremy S. & Watson, Kyle A., 2013. "Investigation of selective catalytic reduction for control of nitrogen oxides in full-scale dairy energy production," Applied Energy, Elsevier, vol. 106(C), pages 328-336.
    6. Tao, Guangcan & Geladi, Paul & Lestander, Torbjörn A. & Xiong, Shaojun, 2012. "Biomass properties in association with plant species and assortments. II: A synthesis based on literature data for ash elements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3507-3522.
    7. Panwar, N.L. & Kothari, Richa & Tyagi, V.V., 2012. "Thermo chemical conversion of biomass – Eco friendly energy routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1801-1816.
    8. Naik, Satyanarayan & Goud, Vaibhav V. & Rout, Prasant K. & Jacobson, Kathlene & Dalai, Ajay K., 2010. "Characterization of Canadian biomass for alternative renewable biofuel," Renewable Energy, Elsevier, vol. 35(8), pages 1624-1631.
    9. Umeki, Kentaro & Yamamoto, Kouichi & Namioka, Tomoaki & Yoshikawa, Kunio, 2010. "High temperature steam-only gasification of woody biomass," Applied Energy, Elsevier, vol. 87(3), pages 791-798, March.
    10. Lawrence, Ben & Annamalai, Kalyan & Sweeten, John M. & Heflin, Kevin, 2009. "Cofiring coal and dairy biomass in a 29Â kWt furnace," Applied Energy, Elsevier, vol. 86(11), pages 2359-2372, November.
    11. Huang, Y. & Dong, H. & Shang, B. & Xin, H. & Zhu, Z., 2011. "Characterization of animal manure and cornstalk ashes as affected by incineration temperature," Applied Energy, Elsevier, vol. 88(3), pages 947-952, March.
    12. Tao, Guangcan & Lestander, Torbjörn A. & Geladi, Paul & Xiong, Shaojun, 2012. "Biomass properties in association with plant species and assortments I: A synthesis based on literature data of energy properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3481-3506.
    13. Thanapal, Siva Sankar & Annamalai, Kalyan & Sweeten, John M. & Gordillo, Gerardo, 2012. "Fixed bed gasification of dairy biomass with enriched air mixture," Applied Energy, Elsevier, vol. 97(C), pages 525-531.
    14. Kambo, Harpreet Singh & Dutta, Animesh, 2014. "Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization," Applied Energy, Elsevier, vol. 135(C), pages 182-191.
    15. Chiang, Kung-Yuh & Chien, Kuang-Li & Lu, Cheng-Han, 2012. "Characterization and comparison of biomass produced from various sources: Suggestions for selection of pretreatment technologies in biomass-to-energy," Applied Energy, Elsevier, vol. 100(C), pages 164-171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izabella Maj, 2022. "Significance and Challenges of Poultry Litter and Cattle Manure as Sustainable Fuels: A Review," Energies, MDPI, vol. 15(23), pages 1-17, November.
    2. Martin Roffeis & Joana Almeida & Maureen Elizabeth Wakefield & Tatiana Raquel Alves Valada & Emilie Devic & N’Golopé Koné & Marc Kenis & Saidou Nacambo & Elaine Charlotte Fitches & Gabriel K. D. Koko , 2017. "Life Cycle Inventory Analysis of Prospective Insect Based Feed Production in West Africa," Sustainability, MDPI, vol. 9(10), pages 1-27, September.
    3. Su, Hongcai & Yan, Mi & Wang, Shurong, 2022. "Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Song, Yapeng & Hu, Wanrong & Qiao, Wei & Westerholm, Maria & Wandera, Simon M. & Dong, Renjie, 2022. "Upgrading the performance of high solids feeding anaerobic digestion of chicken manure under extremely high ammonia level," Renewable Energy, Elsevier, vol. 194(C), pages 13-20.
    5. Fuchs, Werner & Wang, Xuemei & Gabauer, Wolfgang & Ortner, Markus & Li, Zifu, 2018. "Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 186-199.
    6. Mattes Scheftelowitz & Daniela Thrän, 2016. "Unlocking the Energy Potential of Manure—An Assessment of the Biogas Production Potential at the Farm Level in Germany," Agriculture, MDPI, vol. 6(2), pages 1-13, April.
    7. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    8. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    9. Roffeis, Martin & Fitches, Elaine C. & Wakefield, Maureen E. & Almeida, Joana & Alves Valada, Tatiana R. & Devic, Emilie & Koné, N’Golopé & Kenis, Marc & Nacambo, Saidou & Koko, Gabriel K.D. & Mathijs, 2020. "Ex-ante life cycle impact assessment of insect based feed production in West Africa," Agricultural Systems, Elsevier, vol. 178(C).
    10. Jiang, Chunlong & Lin, Qizhao & Wang, Chengxin & Jiang, Xuedan & Bi, Haobo & Bao, Lin, 2020. "Experimental study of the ignition and combustion characteristics of cattle manure under different environmental conditions," Energy, Elsevier, vol. 197(C).
    11. Yuan, Xinsong & He, Tao & Cao, Hongliang & Yuan, Qiaoxia, 2017. "Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods," Renewable Energy, Elsevier, vol. 107(C), pages 489-496.
    12. Ao, Tianjie & Chen, Lin & Zhou, Pan & Liu, Xiaofeng & Li, Dong, 2021. "The role of oxidation-reduction potential as an early warning indicator, and a microbial instability mechanism in a pilot-scale anaerobic mesophilic digestion of chicken manure," Renewable Energy, Elsevier, vol. 179(C), pages 223-232.
    13. Li, Qingyin & Lin, Haisheng & Fan, Huailin & Zhang, Shu & Yuan, Xiangzhou & Wang, Yi & Xiang, Jun & Hu, Song & Bkangmo Kontchouo, Félix Mérimé & Hu, Xun, 2021. "Co-pyrolysis of swine manure and pinewood sawdust: Evidence of cross-interaction of the volatiles and profound impacts on product characteristics," Renewable Energy, Elsevier, vol. 179(C), pages 1370-1384.
    14. Zhang, Deli & Sun, Zhijing & Fu, Hongyue & Liu, Zhenfei & Wang, Fang & Zeng, Jianfei & Yi, Weiming, 2024. "Upgrading of cow manure by hydrothermal carbonization: Evaluation of fuel properties, combustion behaviors and kinetics," Renewable Energy, Elsevier, vol. 225(C).
    15. Jiang, Chunlong & Zhou, Wenliang & Bi, Haobo & Ni, Zhanshi & Sun, Hao & Lin, Qizhao, 2022. "Co-pyrolysis of coal slime and cattle manure by TG–FTIR–MS and artificial neural network modeling: Pyrolysis behavior, kinetics, gas emission characteristics," Energy, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Wenjuan & Han, Lujia & Liu, Xian & Huang, Guangqun & Chen, Longjian & Xiao, Weihua & Yang, Zengling, 2016. "Twenty-two compositional characterizations and theoretical energy potentials of extensively diversified China's crop residues," Energy, Elsevier, vol. 100(C), pages 238-250.
    2. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    3. Yuan, Xinsong & He, Tao & Cao, Hongliang & Yuan, Qiaoxia, 2017. "Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods," Renewable Energy, Elsevier, vol. 107(C), pages 489-496.
    4. Wang, Lijun & Agyemang, Samuel A. & Amini, Hossein & Shahbazi, Abolghasem, 2015. "Mathematical modeling of production and biorefinery of energy crops," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 530-544.
    5. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    6. Wiinikka, Henrik & Wennebro, Jonas & Gullberg, Marcus & Pettersson, Esbjörn & Weiland, Fredrik, 2017. "Pure oxygen fixed-bed gasification of wood under high temperature (>1000°C) freeboard conditions," Applied Energy, Elsevier, vol. 191(C), pages 153-162.
    7. Jia, Junxi & Abudula, Abuliti & Wei, Liming & Sun, Baozhi & Shi, Yue, 2015. "Thermodynamic modeling of an integrated biomass gasification and solid oxide fuel cell system," Renewable Energy, Elsevier, vol. 81(C), pages 400-410.
    8. Chaiwatanodom, Paphonwit & Vivanpatarakij, Supawat & Assabumrungrat, Suttichai, 2014. "Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production," Applied Energy, Elsevier, vol. 114(C), pages 10-17.
    9. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part I: Chemical pathways and bio-oil upgrading," Renewable Energy, Elsevier, vol. 185(C), pages 483-505.
    10. Ng, Wei Cheng & You, Siming & Ling, Ran & Gin, Karina Yew-Hoong & Dai, Yanjun & Wang, Chi-Hwa, 2017. "Co-gasification of woody biomass and chicken manure: Syngas production, biochar reutilization, and cost-benefit analysis," Energy, Elsevier, vol. 139(C), pages 732-742.
    11. Růžičková, Jana & Raclavská, Helena & Juchelková, Dagmar & Kucbel, Marek & Raclavský, Konstantin & Švédová, Barbora & Šafář, Michal & Pfeifer, Christoph & Hrbek, Jitka, 2022. "Organic compounds in the char deposits characterising the combustion of unauthorised fuels in residential boilers," Energy, Elsevier, vol. 257(C).
    12. Ondrasek, G. & Bubalo Kovačić, M. & Carević, I. & Štirmer, N. & Stipičević, S. & Udiković-Kolić, N. & Filipović, V. & Romić, D. & Rengel, Z., 2021. "Bioashes and their potential for reuse to sustain ecosystem services and underpin circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Wei, Maogui & Zhu, Wanbin & Xie, Guanghui & Lestander, Torbjörn A. & Xiong, Shaojun, 2015. "Cassava stem wastes as potential feedstock for fuel ethanol production: A basic parameter study," Renewable Energy, Elsevier, vol. 83(C), pages 970-978.
    14. Guido Busca, 2021. "Production of Gasolines and Monocyclic Aromatic Hydrocarbons: From Fossil Raw Materials to Green Processes," Energies, MDPI, vol. 14(13), pages 1-32, July.
    15. Gai, Chao & Dong, Yuping & Zhang, Tonghui, 2014. "Distribution of sulfur species in gaseous and condensed phase during downdraft gasification of corn straw," Energy, Elsevier, vol. 64(C), pages 248-258.
    16. Olatunji, Obafemi O. & Akinlabi, Stephen & Madushele, Nkosinathi & Adedeji, Paul A., 2020. "Property-based biomass feedstock grading using k-Nearest Neighbour technique," Energy, Elsevier, vol. 190(C).
    17. Pelaez-Samaniego, Manuel Raul & Hummel, Rita L. & Liao, Wei & Ma, Jingwei & Jensen, Jim & Kruger, Chad & Frear, Craig, 2017. "Approaches for adding value to anaerobically digested dairy fiber," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 254-268.
    18. Tripathi, Manoj & Sahu, J.N. & Ganesan, P., 2016. "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 467-481.
    19. Meihui Li & Na Luo & Yi Lu, 2017. "Biomass Energy Technological Paradigm (BETP): Trends in This Sector," Sustainability, MDPI, vol. 9(4), pages 1-28, April.
    20. Izabella Maj, 2022. "Significance and Challenges of Poultry Litter and Cattle Manure as Sustainable Fuels: A Review," Energies, MDPI, vol. 15(23), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:160:y:2015:i:c:p:108-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.