IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i3p947-952.html
   My bibliography  Save this article

Characterization of animal manure and cornstalk ashes as affected by incineration temperature

Author

Listed:
  • Huang, Y.
  • Dong, H.
  • Shang, B.
  • Xin, H.
  • Zhu, Z.

Abstract

Incineration has been proposed as an alternative technology to reuse animal manure by producing energy and ash fertilizers. The objective of this study was to assess the impact of incineration temperature on the physical (ash yield) and chemical (nutrient) properties of ashes for different types of animal manure and cornstalk. The source materials were incinerated in a temperature-controlled muffle furnace at the temperature of 400, 500, 600, 700, 800 or 900 °C and the properties of the resultant ashes were determined following the procedures set by China National Standards. The results indicated that ash yield (AY, %), total nitrogen (TN) recovery and total potassium (K2O) recovery all decreased with increasing incineration temperature. The ranges of AY, ash TN and K2O recovery were, respectively, 43.6-30.2%, 6.9-0.6%, and 80-61% for laying-hen manure; 34.3-32.1%, 18.8-15.4%, and 95-56% for cattle manure; 25.3-20.7%, 14-0%, and 78-57% for swine manure; and 8.4-7.5%, 2.1-1.4%, and 37-19% for cornstalk. However, total phosphorus (P2O5) content of the ashes increased with incineration temperature, being 20.7-24.0% for swine manure, 4.5-7.5% for layer manure, and 2.7-3.4% for cornstalk. Animal manures have greater TN and P2O5 volatilization but less K2O and total sodium (Na2O) volatilization as compared to the cornstalk. The results provide a basis for incineration as an alternative means to reuse animal manures and cornstalk and suitability of the resultant ash co-product for different applications.

Suggested Citation

  • Huang, Y. & Dong, H. & Shang, B. & Xin, H. & Zhu, Z., 2011. "Characterization of animal manure and cornstalk ashes as affected by incineration temperature," Applied Energy, Elsevier, vol. 88(3), pages 947-952, March.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:3:p:947-952
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00327-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izabella Maj, 2022. "Significance and Challenges of Poultry Litter and Cattle Manure as Sustainable Fuels: A Review," Energies, MDPI, vol. 15(23), pages 1-17, November.
    2. Zhang, Jingxin & Kan, Xiang & Shen, Ye & Loh, Kai-Chee & Wang, Chi-Hwa & Dai, Yanjun & Tong, Yen Wah, 2018. "A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment," Energy, Elsevier, vol. 152(C), pages 214-222.
    3. Inés López-Cano & María L. Cayuela & Claudio Mondini & Chibi A. Takaya & Andrew B. Ross & Miguel A. Sánchez-Monedero, 2018. "Suitability of Different Agricultural and Urban Organic Wastes as Feedstocks for the Production of Biochar—Part 1: Physicochemical Characterisation," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    4. Ng, Wei Cheng & You, Siming & Ling, Ran & Gin, Karina Yew-Hoong & Dai, Yanjun & Wang, Chi-Hwa, 2017. "Co-gasification of woody biomass and chicken manure: Syngas production, biochar reutilization, and cost-benefit analysis," Energy, Elsevier, vol. 139(C), pages 732-742.
    5. Shen, Xiuli & Huang, Guangqun & Yang, Zengling & Han, Lujia, 2015. "Compositional characteristics and energy potential of Chinese animal manure by type and as a whole," Applied Energy, Elsevier, vol. 160(C), pages 108-119.
    6. Vamvuka, Despina & Kaniadakis, George & Pentari, Despina & Alevizos, George & Papapolikarpou, Zoe, 2017. "Comparison of ashes from fixed/fluidized bed combustion of swine sludge and olive by-products. Properties, environmental impact and potential uses," Renewable Energy, Elsevier, vol. 112(C), pages 74-83.
    7. Cheng, Xi-Yu & Liu, Chun-Zhao, 2012. "Fungal pretreatment enhances hydrogen production via thermophilic fermentation of cornstalk," Applied Energy, Elsevier, vol. 91(1), pages 1-6.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:3:p:947-952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.