IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i4p1801-1816.html
   My bibliography  Save this article

Thermo chemical conversion of biomass – Eco friendly energy routes

Author

Listed:
  • Panwar, N.L.
  • Kothari, Richa
  • Tyagi, V.V.

Abstract

Biomass is indirect source of solar energy and it is renewable in nature. It is one of the most important energy source in near future because of its extensive spread availability and promising potential to reduce global warming. Thermo chemical conversion of biomass yield variety of solid, liquid and gaseous fuels and have equal importance both at industrial and ecological point of views. Present review gives holistic view of various thermo-chemical conversion route of biomass. Gasification technology, pyrolysis options and scope of potential by product from there routes like hydrogen and charcoal production comprehensively reviewed with present context.

Suggested Citation

  • Panwar, N.L. & Kothari, Richa & Tyagi, V.V., 2012. "Thermo chemical conversion of biomass – Eco friendly energy routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1801-1816.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:4:p:1801-1816
    DOI: 10.1016/j.rser.2012.01.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112000251
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, I. & Gupta, A.K., 2009. "Syngas yield during pyrolysis and steam gasification of paper," Applied Energy, Elsevier, vol. 86(9), pages 1813-1821, September.
    2. Xiao, Ruirui & Chen, Xueli & Wang, Fuchen & Yu, Guangsuo, 2010. "Pyrolysis pretreatment of biomass for entrained-flow gasification," Applied Energy, Elsevier, vol. 87(1), pages 149-155, January.
    3. Richa Kothari & D. Buddhi & R.L. Sawhney, 2004. "Sources and technology for hydrogen production: a review," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 21(1/2), pages 154-178.
    4. Damartzis, T. & Zabaniotou, A., 2011. "Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 366-378, January.
    5. Bridgwater, A. V. & Peacocke, G. V. C., 2000. "Fast pyrolysis processes for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(1), pages 1-73, March.
    6. Seitarides, Th. & Athanasiou, C. & Zabaniotou, A., 2008. "Modular biomass gasification-based solid oxide fuel cells (SOFC) for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1251-1276, June.
    7. Adam, J.C., 2009. "Improved and more environmentally friendly charcoal production system using a low-cost retort–kiln (Eco-charcoal)," Renewable Energy, Elsevier, vol. 34(8), pages 1923-1925.
    8. Wetterlund, Elisabeth & Pettersson, Karin & Harvey, Simon, 2011. "Systems analysis of integrating biomass gasification with pulp and paper production – Effects on economic performance, CO2 emissions and energy use," Energy, Elsevier, vol. 36(2), pages 932-941.
    9. Khundi, Fydess & Jagger, Pamela & Shively, Gerald & Sserunkuuma, Dick, 2011. "Income, poverty and charcoal production in Uganda," Forest Policy and Economics, Elsevier, vol. 13(3), pages 199-205, March.
    10. Saxena, R.C. & Seal, Diptendu & Kumar, Satinder & Goyal, H.B., 2008. "Thermo-chemical routes for hydrogen rich gas from biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1909-1927, September.
    11. Bhattacharya, S. C. & Basak, A. K., 1987. "Performance of a down-draft charcoal gasifier," Applied Energy, Elsevier, vol. 26(3), pages 193-216.
    12. Sharma, Avdhesh Kr., 2009. "Experimental study on 75kWth downdraft (biomass) gasifier system," Renewable Energy, Elsevier, vol. 34(7), pages 1726-1733.
    13. N. Panwar & N. Rathore & A. Kurchania, 2009. "Experimental investigation of open core downdraft biomass gasifier for food processing industry," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(6), pages 547-556, August.
    14. N. Panwar & A. Kurchania & N. Rathore, 2009. "Mitigation of greenhouse gases by adoption of improved biomass cookstoves," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(6), pages 569-578, August.
    15. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    16. Phillips, V.D. & Kinoshita, C.M. & Neill, D.R. & Takahashi, P.K., 1990. "Thermochemical production of methanol from biomass in Hawaii," Applied Energy, Elsevier, vol. 35(3), pages 167-175.
    17. Dogru, M. & Howarth, C.R. & Akay, G. & Keskinler, B. & Malik, A.A., 2002. "Gasification of hazelnut shells in a downdraft gasifier," Energy, Elsevier, vol. 27(5), pages 415-427.
    18. Goyal, H.B. & Seal, Diptendu & Saxena, R.C., 2008. "Bio-fuels from thermochemical conversion of renewable resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 504-517, February.
    19. N. Panwar & N. Rathore, 2009. "Potential of surplus biomass gasifier based power generation: A case study of an Indian state Rajasthan," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(8), pages 711-720, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Oliveira, Jofran Luiz & da Silva, Jadir Nogueira & Graciosa Pereira, Emanuele & Oliveira Filho, Delly & Rizzo Carvalho, Daniel, 2013. "Characterization and mapping of waste from coffee and eucalyptus production in Brazil for thermochemical conversion of energy via gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 52-58.
    2. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    3. Emmanouil Karampinis & Dimitrios-Sotirios Kourkoumpas & Panagiotis Grammelis & Emmanuel Kakaras, 2015. "New power production options for biomass and cogeneration," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(6), pages 471-485, November.
    4. repec:eee:energy:v:142:y:2018:i:c:p:862-877 is not listed on IDEAS
    5. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    6. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "A review on torrefied biomass pellets as a sustainable alternative to coal in power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 153-160.
    7. Halkos, George E. & Tzeremes, Nickolaos G., 2014. "The effect of electricity consumption from renewable sources on countries׳ economic growth levels: Evidence from advanced, emerging and developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 166-173.
    8. Shen, Xiuli & Huang, Guangqun & Yang, Zengling & Han, Lujia, 2015. "Compositional characteristics and energy potential of Chinese animal manure by type and as a whole," Applied Energy, Elsevier, vol. 160(C), pages 108-119.
    9. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    10. Raheem, Abdur & Hassan, Mohammad Yusri & Shakoor, Rabia, 2016. "Bioenergy from anaerobic digestion in Pakistan: Potential, development and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 264-275.
    11. González, Arnau & Riba, Jordi-Roger & Puig, Rita & Navarro, Pere, 2015. "Review of micro- and small-scale technologies to produce electricity and heat from Mediterranean forests׳ wood chips," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 143-155.
    12. repec:eee:rensus:v:82:y:2018:i:p3:p:2365-2378 is not listed on IDEAS
    13. repec:gam:jsusta:v:9:y:2017:i:4:p:567-:d:95281 is not listed on IDEAS
    14. Farooq, Muhammad Khalid & Kumar, S., 2013. "An assessment of renewable energy potential for electricity generation in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 240-254.
    15. Yusuf, Rafiu O. & Noor, Zainura Z. & Abba, Ahmad H. & Hassan, Mohd Ariffin Abu & Din, Mohd Fadhil Mohd, 2012. "Methane emission by sectors: A comprehensive review of emission sources and mitigation methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5059-5070.
    16. Roberts, Justo José & Cassula, Agnelo Marotta & Osvaldo Prado, Pedro & Dias, Rubens Alves & Balestieri, José Antonio Perrella, 2015. "Assessment of dry residual biomass potential for use as alternative energy source in the party of General Pueyrredón, Argentina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 568-583.
    17. Ren, Qiangqiang & Zhao, Changsui, 2015. "Evolution of fuel-N in gas phase during biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 408-418.
    18. repec:eee:rensus:v:81:y:2018:i:p1:p:380-398 is not listed on IDEAS
    19. repec:eee:rensus:v:79:y:2017:i:c:p:914-923 is not listed on IDEAS
    20. Mousa, Elsayed & Wang, Chuan & Riesbeck, Johan & Larsson, Mikael, 2016. "Biomass applications in iron and steel industry: An overview of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1247-1266.
    21. Nasir Uddin, Md. & Daud, W.M.A. Wan & Abbas, Hazim F., 2013. "Potential hydrogen and non-condensable gases production from biomass pyrolysis: Insights into the process variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 204-224.
    22. Okello, Collins & Pindozzi, Stefania & Faugno, Salvatore & Boccia, Lorenzo, 2013. "Development of bioenergy technologies in Uganda: A review of progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 55-63.
    23. repec:eee:rensus:v:78:y:2017:i:c:p:1221-1235 is not listed on IDEAS
    24. Anukam, Anthony & Mamphweli, Sampson & Reddy, Prashant & Meyer, Edson & Okoh, Omobola, 2016. "Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 775-801.
    25. repec:eee:rensus:v:75:y:2017:i:c:p:592-600 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:4:p:1801-1816. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.