IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v12y2008i2p504-517.html
   My bibliography  Save this article

Bio-fuels from thermochemical conversion of renewable resources: A review

Author

Listed:
  • Goyal, H.B.
  • Seal, Diptendu
  • Saxena, R.C.

Abstract

Demand for energy and its resources, is increasing every day due to the rapid outgrowth of population and urbanization. As the major conventional energy resources like coal, petroleum and natural gas are at the verge of getting extinct, biomass can be considered as one of the promising environment friendly renewable energy options. Different thermo-chemical conversion processes that include combustion, gasification, liquefaction, hydrogenation and pyrolysis, have been used to convert the biomass into various energy products. Although pyrolysis is still under developing stage but during current energy scenario, pyrolysis has received special attention as it can convert biomass directly into solid, liquid and gaseous products by thermal decomposition of biomass in absence of oxygen. In this review article, the focus has been made on pyrolysis while other conventional processes have been discussed in brief. For having better insight, various types of pyrolysis processes have been discussed in detail including slow, fast, flash and catalytic pyrolysis processes. Besides biomass resources and constituents, the composition and uses of pyrolysis products have been discussed in detail. This review article aim to focus on various operational parameters, viz. temperature and particle size of biomass and product yields using various types of biomasses.

Suggested Citation

  • Goyal, H.B. & Seal, Diptendu & Saxena, R.C., 2008. "Bio-fuels from thermochemical conversion of renewable resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 504-517, February.
  • Handle: RePEc:eee:rensus:v:12:y:2008:i:2:p:504-517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(06)00117-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bridgwater, A. V. & Peacocke, G. V. C., 2000. "Fast pyrolysis processes for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(1), pages 1-73, March.
    2. Beis, S.H. & Onay, Ö. & Koçkar, Ö.M., 2002. "Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions," Renewable Energy, Elsevier, vol. 26(1), pages 21-32.
    3. Özbay, N & Pütün, A.E & Uzun, B.B & Pütün, E, 2001. "Biocrude from biomass: pyrolysis of cottonseed cake," Renewable Energy, Elsevier, vol. 24(3), pages 615-625.
    4. Fujino, Junichi & Yamaji, Kenji & Yamamoto, Hiromi, 1999. "Biomass-Balance Table for evaluating bioenergy resources," Applied Energy, Elsevier, vol. 63(2), pages 75-89, June.
    5. Williams, Paul T & Nugranad, Nittaya, 2000. "Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks," Energy, Elsevier, vol. 25(6), pages 493-513.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossain, A.K. & Davies, P.A., 2013. "Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 165-189.
    2. Isahak, Wan Nor Roslam Wan & Hisham, Mohamed W.M. & Yarmo, Mohd Ambar & Yun Hin, Taufiq-yap, 2012. "A review on bio-oil production from biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5910-5923.
    3. Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
    4. Sellin, Noeli & Krohl, Diego Ricardo & Marangoni, Cintia & Souza, Ozair, 2016. "Oxidative fast pyrolysis of banana leaves in fluidized bed reactor," Renewable Energy, Elsevier, vol. 96(PA), pages 56-64.
    5. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Isa, Khairuddin Md & Abdullah, Tuan Amran Tuan & Ali, Umi Fazara Md, 2018. "Hydrogen donor solvents in liquefaction of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1259-1268.
    7. Sokoto, Muhammad Abdullahi & Biswas, Bijoy & Kumar, Jitendra & Bhaskar, Thallada, 2020. "Slow pyrolysis of Defatted Seeds Cakes of African star apple and silk cotton for production of bio-oil," Renewable Energy, Elsevier, vol. 146(C), pages 1710-1716.
    8. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    9. Nasir Uddin, Md. & Daud, W.M.A. Wan & Abbas, Hazim F., 2013. "Potential hydrogen and non-condensable gases production from biomass pyrolysis: Insights into the process variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 204-224.
    10. Tripathi, Manoj & Sahu, J.N. & Ganesan, P., 2016. "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 467-481.
    11. Akhtar, Javaid & Saidina Amin, NorAishah, 2012. "A review on operating parameters for optimum liquid oil yield in biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5101-5109.
    12. Cai, Wenfei & Dai, Li & Liu, Ronghou, 2018. "Catalytic fast pyrolysis of rice husk for bio-oil production," Energy, Elsevier, vol. 154(C), pages 477-487.
    13. Mushtaq, Faisal & Mat, Ramli & Ani, Farid Nasir, 2014. "A review on microwave assisted pyrolysis of coal and biomass for fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 555-574.
    14. Soria-Verdugo, Antonio & Rubio-Rubio, Mariano & Goos, Elke & Riedel, Uwe, 2020. "On the characteristic heating and pyrolysis time of thermally small biomass particles in a bubbling fluidized bed reactor," Renewable Energy, Elsevier, vol. 160(C), pages 312-322.
    15. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    16. Ioannidou, O. & Zabaniotou, A. & Antonakou, E.V. & Papazisi, K.M. & Lappas, A.A. & Athanassiou, C., 2009. "Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 750-762, May.
    17. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    18. Jos#X00C9; Moreira, 2006. "Global Biomass Energy Potential," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 313-333, March.
    19. Pütün, Ayşe E. & Apaydın, Esin & Pütün, Ersan, 2004. "Rice straw as a bio-oil source via pyrolysis and steam pyrolysis," Energy, Elsevier, vol. 29(12), pages 2171-2180.
    20. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.

    More about this item

    Keywords

    Biomass Thermo-chemical Pyrolysis;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:12:y:2008:i:2:p:504-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.