IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225007510.html
   My bibliography  Save this article

A novel neural network with variable-activation-function for analytical redundancy of variable cycle engine sensors

Author

Listed:
  • Ran, Pengyu
  • Huang, Xianghua
  • Zhang, Zihao
  • Hao, Xuanzhang
  • Li, Lingwei

Abstract

Analytical redundancy based on data-driven technology is an effective method of reconstructing faulty sensors in the aeroengine control system. Compared to traditional aeroengines, variable cycle engine (VCE) has more control parameters and more complex analytical relationships among parameters. This fact requires higher nonlinear expression ability of data-driven analytical redundancy models which have more input variables and deeper layers, resulting in slower calculation speeds. To enhance the nonlinear expressive ability of algorithms and simultaneously reduce calculation time, variable-activation-function neural network (VANN) is proposed to construct the analytical redundancy for VCE sensors. The activation function of VANN is variable in response to the time-varying analytical relationships. Moreover, the weights and biases of VANN are input functions, and the biases can be utilized to rapidly eliminate the error between the actual sensor output and the estimated value at the terminal node. Therefore, the nonlinear expression ability of VANN is enhanced while reducing the network parameters. Compared with other neural networks, VANN has the lowest Relative Root Mean Square Error for estimating various sensor signals. Besides, for an aeroengine control system, the calculation time of VANN is 0.73 ms, far less than each interval of the control step, which is usually around 20 ms.

Suggested Citation

  • Ran, Pengyu & Huang, Xianghua & Zhang, Zihao & Hao, Xuanzhang & Li, Lingwei, 2025. "A novel neural network with variable-activation-function for analytical redundancy of variable cycle engine sensors," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225007510
    DOI: 10.1016/j.energy.2025.135109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225007510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Song, Jie & Wang, Yong & Ji, Chuang & Zhang, Haibo, 2024. "Real-time optimization control of variable rotor speed based on Helicopter/ turboshaft engine on-board composite system," Energy, Elsevier, vol. 301(C).
    2. Chen, Zhiwei & Zhao, Weicheng & Lin, Xiaoyong & Han, Yongming & Hu, Xuan & Yuan, Kui & Geng, Zhiqiang, 2024. "Load prediction of integrated energy systems for energy saving and carbon emission based on novel multi-scale fusion convolutional neural network," Energy, Elsevier, vol. 290(C).
    3. Jun Zhou & Yuan Liu & Tianhong Zhang, 2016. "Analytical Redundancy Design for Aeroengine Sensor Fault Diagnostics Based on SROS-ELM," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-9, April.
    4. Xu, Maojun & Liu, Jinxin & Li, Ming & Geng, Jia & Wu, Yun & Song, Zhiping, 2022. "Improved hybrid modeling method with input and output self-tuning for gas turbine engine," Energy, Elsevier, vol. 238(PA).
    5. Xu, Huanwei & Wu, Lingfeng & Xiong, Shizhe & Li, Wei & Garg, Akhil & Gao, Liang, 2023. "An improved CNN-LSTM model-based state-of-health estimation approach for lithium-ion batteries," Energy, Elsevier, vol. 276(C).
    6. Aygun, Hakan & Turan, Onder, 2020. "Exergetic sustainability off-design analysis of variable-cycle aero-engine in various bypass modes," Energy, Elsevier, vol. 195(C).
    7. Xiaojie Qiu & Xiaodong Chang & Jie Chen & Baiqing Fan, 2022. "Research on the Analytical Redundancy Method for the Control System of Variable Cycle Engine," Sustainability, MDPI, vol. 14(10), pages 1-11, May.
    8. Zhen, Man & Dong, Xuezhi & Shao, Dong & Liu, Xiyang & Tan, Chunqing, 2024. "Research on high fidelity modelling and optimum designing of an adaptive cycle engine's starting process," Energy, Elsevier, vol. 294(C).
    9. Xiaodong Chang & Jinquan Huang & Feng Lu, 2019. "Sensor Fault Tolerant Control for Aircraft Engines Using Sliding Mode Observer," Energies, MDPI, vol. 12(21), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xinhai & Wang, Kang & Geng, Jia & Li, Ming & Song, Zhiping, 2024. "A fault-tolerant acceleration control strategy for turbofan engine based on multi-layer perceptron with exponential Gumbel loss," Energy, Elsevier, vol. 294(C).
    2. Zhao, Hang & Zhai, Xiongfei & Liao, Zengbu & Li, Zichen & Song, Zhiping, 2025. "Gas turbine thrust estimation in sensor drift scenarios using a three-stage multi-target domain adaptation method," Energy, Elsevier, vol. 314(C).
    3. Zou, Wangzhi & Zheng, Xinqian & Liu, Weitao & Lai, Jun & Wang, Baotong, 2024. "0D-1D coupled method for performance design and analysis of adaptive cycle engine - Modeling, simulation and validation," Energy, Elsevier, vol. 313(C).
    4. Li, Xiaopeng & Zhao, Minghang & Zhong, Shisheng & Li, Junfu & Fu, Song & Yan, Zhiqi, 2024. "BMSFormer: An efficient deep learning model for online state-of-health estimation of lithium-ion batteries under high-frequency early SOC data with strong correlated single health indicator," Energy, Elsevier, vol. 313(C).
    5. S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
    6. Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
    7. Zhao, Jingyuan & Wang, Zhenghong & Wu, Yuyan & Burke, Andrew F., 2025. "Predictive pretrained transformer (PPT) for real-time battery health diagnostics," Applied Energy, Elsevier, vol. 377(PD).
    8. Peng, Simin & Wang, Yujian & Tang, Aihua & Jiang, Yuxia & Kan, Jiarong & Pecht, Michael, 2025. "State of health estimation joint improved grey wolf optimization algorithm and LSTM using partial discharging health features for lithium-ion batteries," Energy, Elsevier, vol. 315(C).
    9. Wang, Busheng & Xuan, Yimin, 2023. "An integrated model for energy management of aero engines based on thermodynamic principle of variable mass systems," Energy, Elsevier, vol. 276(C).
    10. Aygun, Hakan, 2022. "Thermodynamic, environmental and sustainability calculations of a conceptual turboshaft engine under several power settings," Energy, Elsevier, vol. 245(C).
    11. Tang, Telu & Yang, Xiangguo & Li, Muheng & Li, Xin & Huang, Hai & Guan, Cong & Huang, Jiangfan & Wang, Yufan & Zhou, Chaobin, 2025. "Deep learning model-based real-time state-of-health estimation of lithium-ion batteries under dynamic operating conditions," Energy, Elsevier, vol. 317(C).
    12. Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
    13. Aygun, Hakan & Kirmizi, Mehmet & Turan, Onder, 2022. "Propeller effects on energy, exergy and sustainability parameters of a small turboprop engine," Energy, Elsevier, vol. 249(C).
    14. Furlong, Aidan & Alsafadi, Farah & Palmtag, Scott & Godfrey, Andrew & Wu, Xu, 2025. "Data-driven prediction and uncertainty quantification of PWR crud-induced power shift using convolutional neural networks," Energy, Elsevier, vol. 316(C).
    15. Chin, Min Yee & Qin, Yuting & Hoy, Zheng Xuan & Farooque, Aitazaz Ahsan & Wong, Keng Yinn & Mong, Guo Ren & Tan, Jian Ping & Woon, Kok Sin, 2024. "Assessing carbon budgets and reduction pathways in different income levels with neural network forecasting," Energy, Elsevier, vol. 305(C).
    16. Sun, Jing & Fan, Chaoqun & Yan, Huiyi, 2024. "SOH estimation of lithium-ion batteries based on multi-feature deep fusion and XGBoost," Energy, Elsevier, vol. 306(C).
    17. Feng, Hailong & Liu, Bei & Xu, Maojun & Li, Ming & Song, Zhiping, 2024. "Model-based deduction learning control: A novel method for optimizing gas turbine engine afterburner transient," Energy, Elsevier, vol. 292(C).
    18. Chen, Kui & Luo, Yang & Long, Zhou & Li, Yang & Nie, Guangbo & Liu, Kai & Xin, Dongli & Gao, Guoqiang & Wu, Guangning, 2025. "Big data-driven prognostics and health management of lithium-ion batteries:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    19. Bao, Zhengyi & Nie, Jiahao & Lin, Huipin & Jiang, Jiahao & He, Zhiwei & Gao, Mingyu, 2023. "A global–local context embedding learning based sequence-free framework for state of health estimation of lithium-ion battery," Energy, Elsevier, vol. 282(C).
    20. Liao, Zengbu & Zhan, Keyi & Zhao, Hang & Deng, Yuntao & Geng, Jia & Chen, Xuefeng & Song, Zhiping, 2024. "Addressing class-imbalanced learning in real-time aero-engine gas-path fault diagnosis via feature filtering and mapping," Reliability Engineering and System Safety, Elsevier, vol. 249(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225007510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.