IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p5905-d814640.html
   My bibliography  Save this article

Research on the Analytical Redundancy Method for the Control System of Variable Cycle Engine

Author

Listed:
  • Xiaojie Qiu

    (AECC Aero Engine Control System Institute, Wuxi 214063, China)

  • Xiaodong Chang

    (AECC Aero Engine Control System Institute, Wuxi 214063, China)

  • Jie Chen

    (AECC Aero Engine Control System Institute, Wuxi 214063, China)

  • Baiqing Fan

    (AECC Aero Engine Control System Institute, Wuxi 214063, China)

Abstract

The safety and reliability of the measuring elements of an aero-engine are important preconditions of the stable operation of the engine control system. The number of control parameters of a variable cycle engine increases by 20%–40% compared to traditional engines. Therefore, it is important to conduct study on the analytical redundancy, design fault diagnosis and isolation of the sensors, as well as the signal reconstruction system, so as to increase the ratability and fault-tolerant capability of the variable cycle engine control system. The analytical redundancy method relies on the accuracy of the mathematical model of the engine. During the service cycle of the engine, it is inevitable that the engine performance will deteriorate, resulting in a mismatch with the model. In this paper, the adaptive model of the variable cycle engine is built with a Kalman filter. Based on this, the strategy of analytical redundancy logic is built and the dynamic adaptive calculation of the threshold is introduced. Simulation results reflect that this method can effectively increase the reliability of sensor fault diagnosis and the accuracy of the analytical redundancy when there is performance degradation of the variable cycle engine.

Suggested Citation

  • Xiaojie Qiu & Xiaodong Chang & Jie Chen & Baiqing Fan, 2022. "Research on the Analytical Redundancy Method for the Control System of Variable Cycle Engine," Sustainability, MDPI, vol. 14(10), pages 1-11, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5905-:d:814640
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/5905/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/5905/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng Lu & Jinquan Huang & Yiqiu Lv, 2013. "Gas Path Health Monitoring for a Turbofan Engine Based on a Nonlinear Filtering Approach," Energies, MDPI, vol. 6(1), pages 1-22, January.
    2. Xiaodong Chang & Jinquan Huang & Feng Lu, 2019. "Sensor Fault Tolerant Control for Aircraft Engines Using Sliding Mode Observer," Energies, MDPI, vol. 12(21), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaodong Chang & Jinquan Huang & Feng Lu, 2017. "Health Parameter Estimation with Second-Order Sliding Mode Observer for a Turbofan Engine," Energies, MDPI, vol. 10(7), pages 1-19, July.
    2. Zijian Qiang & Jinquan Huang & Feng Lu & Xiaodong Chang, 2019. "Robust Sensor Fault Reconstruction via a Bank of Second-Order Sliding Mode Observers for Aircraft Engines," Energies, MDPI, vol. 12(14), pages 1-20, July.
    3. Feng Lu & Jipeng Jiang & Jinquan Huang & Xiaojie Qiu, 2018. "An Iterative Reduced KPCA Hidden Markov Model for Gas Turbine Performance Fault Diagnosis," Energies, MDPI, vol. 11(7), pages 1-21, July.
    4. Feng Lu & Chunyu Jiang & Jinquan Huang & Yafan Wang & Chengxin You, 2016. "A Novel Data Hierarchical Fusion Method for Gas Turbine Engine Performance Fault Diagnosis," Energies, MDPI, vol. 9(10), pages 1-22, October.
    5. Long, Zhenhua & Bai, Mingliang & Ren, Minghao & Liu, Jinfu & Yu, Daren, 2023. "Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network," Energy, Elsevier, vol. 272(C).
    6. Xiaodong Chang & Jinquan Huang & Feng Lu, 2019. "Sensor Fault Tolerant Control for Aircraft Engines Using Sliding Mode Observer," Energies, MDPI, vol. 12(21), pages 1-15, October.
    7. Feng Lu & Yafan Wang & Jinquan Huang & Yihuan Huang, 2015. "Gas Turbine Transient Performance Tracking Using Data Fusion Based on an Adaptive Particle Filter," Energies, MDPI, vol. 8(12), pages 1-17, December.
    8. Xiaodong Chang & Jinquan Huang & Feng Lu & Haobo Sun, 2016. "Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer," Energies, MDPI, vol. 9(8), pages 1-15, July.
    9. Qingcai Yang & Shuying Li & Yunpeng Cao & Fengshou Gu & Ann Smith, 2018. "A Gas Path Fault Contribution Matrix for Marine Gas Turbine Diagnosis Based on a Multiple Model Fault Detection and Isolation Approach," Energies, MDPI, vol. 11(12), pages 1-21, November.
    10. Daijiry Narzary & Kalyana C. Veluvolu, 2021. "Higher Order Sliding Mode Observer-Based Sensor Fault Detection in DC Microgrid’s Buck Converter," Energies, MDPI, vol. 14(6), pages 1-14, March.
    11. Jakovljević, Ivan & Mijailović, Radomir & Mirosavljević, Petar, 2018. "Carbon dioxide emission during the life cycle of turbofan aircraft," Energy, Elsevier, vol. 148(C), pages 866-875.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5905-:d:814640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.