IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i1p492-513d22922.html
   My bibliography  Save this article

Gas Path Health Monitoring for a Turbofan Engine Based on a Nonlinear Filtering Approach

Author

Listed:
  • Feng Lu

    (College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    Aviation Motor Control System Institute, Aviation Industry Corporation of China, Wuxi 214063, China)

  • Jinquan Huang

    (College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Yiqiu Lv

    (College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract

Different approaches for gas path performance estimation of dynamic systems are commonly used, the most common being the variants of the Kalman filter. The extended Kalman filter (EKF) method is a popular approach for nonlinear systems which combines the traditional Kalman filtering and linearization techniques to effectively deal with weakly nonlinear and non-Gaussian problems. Its mathematical formulation is based on the assumption that the probability density function (PDF) of the state vector can be approximated to be Gaussian. Recent investigations have focused on the particle filter (PF) based on Monte Carlo sampling algorithms for tackling strong nonlinear and non-Gaussian models. Considering the aircraft engine is a complicated machine, operating under a harsh environment, and polluted by complex noises, the PF might be an available way to monitor gas path health for aircraft engines. Up to this point in time a number of Kalman filtering approaches have been used for aircraft turbofan engine gas path health estimation, but the particle filters have not been used for this purpose and a systematic comparison has not been published. This paper presents gas path health monitoring based on the PF and the constrained extend Kalman particle filter (cEKPF), and then compares the estimation accuracy and computational effort of these filters to the EKF for aircraft engine performance estimation under rapid faults and general deterioration. Finally, the effects of the constraint mechanism and particle number on the cEKPF are discussed. We show in this paper that the cEKPF outperforms the EKF, PF and EKPF, and conclude that the cEKPF is the best choice for turbofan engine health monitoring.

Suggested Citation

  • Feng Lu & Jinquan Huang & Yiqiu Lv, 2013. "Gas Path Health Monitoring for a Turbofan Engine Based on a Nonlinear Filtering Approach," Energies, MDPI, vol. 6(1), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:1:p:492-513:d:22922
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/1/492/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/1/492/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Y.G. & Pilidis, P., 2010. "GA-based design-point performance adaptation and its comparison with ICM-based approach," Applied Energy, Elsevier, vol. 87(1), pages 340-348, January.
    2. Joly, R. B. & Ogaji, S. O. T. & Singh, R. & Probert, S. D., 2004. "Gas-turbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine," Applied Energy, Elsevier, vol. 78(4), pages 397-418, August.
    3. Ogaji, S.O.T. & Marinai, L. & Sampath, S. & Singh, R. & Prober, S.D., 2005. "Gas-turbine fault diagnostics: a fuzzy-logic approach," Applied Energy, Elsevier, vol. 82(1), pages 81-89, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaodong Chang & Jinquan Huang & Feng Lu & Haobo Sun, 2016. "Gas-Path Health Estimation for an Aircraft Engine Based on a Sliding Mode Observer," Energies, MDPI, vol. 9(8), pages 1-15, July.
    2. Xiaodong Chang & Jinquan Huang & Feng Lu, 2017. "Health Parameter Estimation with Second-Order Sliding Mode Observer for a Turbofan Engine," Energies, MDPI, vol. 10(7), pages 1-19, July.
    3. Zijian Qiang & Jinquan Huang & Feng Lu & Xiaodong Chang, 2019. "Robust Sensor Fault Reconstruction via a Bank of Second-Order Sliding Mode Observers for Aircraft Engines," Energies, MDPI, vol. 12(14), pages 1-20, July.
    4. Jakovljević, Ivan & Mijailović, Radomir & Mirosavljević, Petar, 2018. "Carbon dioxide emission during the life cycle of turbofan aircraft," Energy, Elsevier, vol. 148(C), pages 866-875.
    5. Long, Zhenhua & Bai, Mingliang & Ren, Minghao & Liu, Jinfu & Yu, Daren, 2023. "Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network," Energy, Elsevier, vol. 272(C).
    6. Xiaojie Qiu & Xiaodong Chang & Jie Chen & Baiqing Fan, 2022. "Research on the Analytical Redundancy Method for the Control System of Variable Cycle Engine," Sustainability, MDPI, vol. 14(10), pages 1-11, May.
    7. Qingcai Yang & Shuying Li & Yunpeng Cao & Fengshou Gu & Ann Smith, 2018. "A Gas Path Fault Contribution Matrix for Marine Gas Turbine Diagnosis Based on a Multiple Model Fault Detection and Isolation Approach," Energies, MDPI, vol. 11(12), pages 1-21, November.
    8. Xiaodong Chang & Jinquan Huang & Feng Lu, 2019. "Sensor Fault Tolerant Control for Aircraft Engines Using Sliding Mode Observer," Energies, MDPI, vol. 12(21), pages 1-15, October.
    9. Feng Lu & Yafan Wang & Jinquan Huang & Yihuan Huang, 2015. "Gas Turbine Transient Performance Tracking Using Data Fusion Based on an Adaptive Particle Filter," Energies, MDPI, vol. 8(12), pages 1-17, December.
    10. Feng Lu & Jipeng Jiang & Jinquan Huang & Xiaojie Qiu, 2018. "An Iterative Reduced KPCA Hidden Markov Model for Gas Turbine Performance Fault Diagnosis," Energies, MDPI, vol. 11(7), pages 1-21, July.
    11. Feng Lu & Chunyu Jiang & Jinquan Huang & Yafan Wang & Chengxin You, 2016. "A Novel Data Hierarchical Fusion Method for Gas Turbine Engine Performance Fault Diagnosis," Energies, MDPI, vol. 9(10), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaodong Chang & Jinquan Huang & Feng Lu, 2017. "Health Parameter Estimation with Second-Order Sliding Mode Observer for a Turbofan Engine," Energies, MDPI, vol. 10(7), pages 1-19, July.
    2. Tsoutsanis, Elias & Meskin, Nader & Benammar, Mohieddine & Khorasani, Khashayar, 2016. "A dynamic prognosis scheme for flexible operation of gas turbines," Applied Energy, Elsevier, vol. 164(C), pages 686-701.
    3. Zhao, Junjie & Li, Yi-Guang & Sampath, Suresh, 2023. "A hierarchical structure built on physical and data-based information for intelligent aero-engine gas path diagnostics," Applied Energy, Elsevier, vol. 332(C).
    4. Finn, Joshua & Wagner, John & Bassily, Hany, 2010. "Monitoring strategies for a combined cycle electric power generator," Applied Energy, Elsevier, vol. 87(8), pages 2621-2627, August.
    5. Li, Yangtao & Khajepour, Amir & Devaud, Cécile, 2018. "Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines," Applied Energy, Elsevier, vol. 222(C), pages 199-215.
    6. Meng Xia & Fujun Zhang, 2020. "Application of Multi-Parameter Fuzzy Optimization to Enhance Performance of a Regulated Two-Stage Turbocharged Diesel Engine Operating at High Altitude," Energies, MDPI, vol. 13(17), pages 1-12, August.
    7. Rahmoune, Mohamed Ben & Hafaifa, Ahmed & Kouzou, Abdellah & Chen, XiaoQi & Chaibet, Ahmed, 2021. "Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 23-47.
    8. Yu, Youhong & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2007. "Neural-network based analysis and prediction of a compressor's characteristic performance map," Applied Energy, Elsevier, vol. 84(1), pages 48-55, January.
    9. Maria Grazia De Giorgi & Nicola Menga & Antonio Ficarella, 2023. "Exploring Prognostic and Diagnostic Techniques for Jet Engine Health Monitoring: A Review of Degradation Mechanisms and Advanced Prediction Strategies," Energies, MDPI, vol. 16(6), pages 1-37, March.
    10. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    11. Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
    12. Kang, Do Won & Kim, Tong Seop, 2018. "Model-based performance diagnostics of heavy-duty gas turbines using compressor map adaptation," Applied Energy, Elsevier, vol. 212(C), pages 1345-1359.
    13. Zhang, Qiang & Ogren, Ryan M. & Kong, Song-Charng, 2016. "A comparative study of biodiesel engine performance optimization using enhanced hybrid PSO–GA and basic GA," Applied Energy, Elsevier, vol. 165(C), pages 676-684.
    14. Li, Yangtao & Khajepour, Amir & Devaud, Cécile & Liu, Kaimin, 2017. "Power and fuel economy optimizations of gasoline engines using hydraulic variable valve actuation system," Applied Energy, Elsevier, vol. 206(C), pages 577-593.
    15. Zhang, Jinning & Roumeliotis, Ioannis & Zolotas, Argyrios, 2022. "Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy," Energy, Elsevier, vol. 245(C).
    16. Fang, Xiande & Dai, Qiumin & Yin, Yanxin & Xu, Yu, 2010. "A compact and accurate empirical model for turbine mass flow characteristics," Energy, Elsevier, vol. 35(12), pages 4819-4823.
    17. Ghorbanian, K. & Gholamrezaei, M., 2009. "An artificial neural network approach to compressor performance prediction," Applied Energy, Elsevier, vol. 86(7-8), pages 1210-1221, July.
    18. Syed, Mohammed S. & Dooley, Kerry M. & Madron, Frantisek & Knopf, F. Carl, 2016. "Enhanced turbine monitoring using emissions measurements and data reconciliation," Applied Energy, Elsevier, vol. 173(C), pages 355-365.
    19. Tsoutsanis, Elias & Meskin, Nader & Benammar, Mohieddine & Khorasani, Khashayar, 2014. "A component map tuning method for performance prediction and diagnostics of gas turbine compressors," Applied Energy, Elsevier, vol. 135(C), pages 572-585.
    20. Feng Lu & Yafan Wang & Jinquan Huang & Yihuan Huang, 2015. "Gas Turbine Transient Performance Tracking Using Data Fusion Based on an Adaptive Particle Filter," Energies, MDPI, vol. 8(12), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:1:p:492-513:d:22922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.