IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v325y2025ics0360544225018468.html
   My bibliography  Save this article

Nuclear power systems unsupervised anomaly localization considering spatiotemporal information and influence mechanism between devices

Author

Listed:
  • Wang, Haotong
  • Shi, Jianxin
  • Lin, Chaojing
  • Liu, Xinmeng
  • Li, Guolong
  • Sun, Shengdi
  • Zhou, Xin
  • Li, Yanjun

Abstract

The anomaly detection and localization methods based on unsupervised clustering models are more suitable for nuclear power systems operation monitoring than supervised classification models, especially in the absence of anomalies and faults training data in reality. However, existing anomaly localization methods ignore the mutual influences' differences between devices, and the effects of thermal and volumetric inertia. A novel unsupervised anomaly localization method for nuclear power systems is proposed to address these problems. The Devices Influence Relationship Directed Matrix is constructed based on Auto-Regressive Integrated Moving Average model and thermal-hydraulic mechanism to quantify the influence degrees between devices; The Spatiotemporal Graph Convolutional Networks are combined with the Auto-Encoder to extract parameters' spatiotemporal information and reconstruct systems operation data; Finally, anomalies are located based on the parameters' data reconstruction error trends. The novel method's effectiveness was validated based on two nuclear power systems anomalies datasets. The results show that compared to other state-of-the-art methods, the novel method has accuracy rates that are approximately 5 % higher for anomaly detection and 7.5 % higher for anomaly localization, respectively, and can alert three time steps in advance.

Suggested Citation

  • Wang, Haotong & Shi, Jianxin & Lin, Chaojing & Liu, Xinmeng & Li, Guolong & Sun, Shengdi & Zhou, Xin & Li, Yanjun, 2025. "Nuclear power systems unsupervised anomaly localization considering spatiotemporal information and influence mechanism between devices," Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225018468
    DOI: 10.1016/j.energy.2025.136204
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225018468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Agnieszka Gałecka & Mariusz Pyra, 2024. "Changes in the Global Structure of Energy Consumption and the Energy Transition Process," Energies, MDPI, vol. 17(22), pages 1-18, November.
    2. Wang, Haotong & Li, Yanjun & Lin, Chaojing & Yang, Siyuan & Li, Guolong & Sun, Shengdi & Tian, Ye & Shi, Jianxin, 2024. "Research on condition assessment of nuclear power systems based on fault severity and fault harmfulness," Energy, Elsevier, vol. 311(C).
    3. Hongjun, Guan & Liye, Dong & Aiwu, Zhao, 2023. "Energy structure dividend, factor allocation efficiency and regional productivity growth-- An empirical examination of energy restructuring in China," Energy Policy, Elsevier, vol. 172(C).
    4. Kim, Younghwan & Kim, Minki & Kim, Wonjoon, 2013. "Effect of the Fukushima nuclear disaster on global public acceptance of nuclear energy," Energy Policy, Elsevier, vol. 61(C), pages 822-828.
    5. Yu, Haibo & Chang, Ling & Yang, Minghan & Chen, Shuai & Li, Huijuan & Wang, Jianye, 2025. "Time series modeling and forecasting with feature decomposition and interaction for prognostics and health management in nuclear power plant," Energy, Elsevier, vol. 324(C).
    6. Khaleghi, Sahar & Hosen, Md Sazzad & Karimi, Danial & Behi, Hamidreza & Beheshti, S. Hamidreza & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "Developing an online data-driven approach for prognostics and health management of lithium-ion batteries," Applied Energy, Elsevier, vol. 308(C).
    7. Yang, Yanru & Liu, Yu & Zhang, Yihang & Shu, Shaolong & Zheng, Junsheng, 2025. "DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting," Applied Energy, Elsevier, vol. 378(PA).
    8. Dong, Zhe & Cheng, Zhonghua & Zhu, Yunlong & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Coordinated control of mHTGR-based nuclear steam supply systems considering cold helium temperature," Energy, Elsevier, vol. 284(C).
    9. Jiang, Qingfeng & Wang, Pengfei, 2025. "NSGA-II algorithm based control parameters optimization strategy for megawatt novel nuclear power systems," Energy, Elsevier, vol. 316(C).
    10. Wang, Fu & Xiahou, Tangfan & Zhang, Xian & He, Pan & Yang, Taibo & Niu, Jiang & Liu, Caixue & Liu, Yu, 2024. "Convolutional preprocessing Transformer-based fault diagnosis for rectifier-filter circuits in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    11. Yao, Yuantao & Han, Te & Yu, Jie & Xie, Min, 2024. "Uncertainty-aware deep learning for reliable health monitoring in safety-critical energy systems," Energy, Elsevier, vol. 291(C).
    12. Bin Ma & Penghui Li & Xing Guo & Hongxue Zhao & Yong Chen, 2023. "A Novel Online Prediction Method for Vehicle Velocity and Road Gradient Based on a Flexible-Structure Auto-Regressive Integrated Moving Average Model," Sustainability, MDPI, vol. 15(21), pages 1-18, November.
    13. Zhang, Chu & Qiao, Xiujie & Zhang, Zhao & Wang, Yuhan & Fu, Yongyan & Nazir, Muhammad Shahzad & Peng, Tian, 2024. "Simultaneous forecasting of wind speed for multiple stations based on attribute-augmented spatiotemporal graph convolutional network and tree-structured parzen estimator," Energy, Elsevier, vol. 295(C).
    14. Li, Jiangkuan & Lin, Meng & Wang, Bo & Tian, Ruifeng & Tan, Sichao & Li, Yankai & Chen, Junjie, 2024. "Open set recognition fault diagnosis framework based on convolutional prototype learning network for nuclear power plants," Energy, Elsevier, vol. 290(C).
    15. Jiang, Dingyu & Wu, Hexin & Gou, Junli & Zhang, Bo & Shan, Jianqiang, 2025. "Performance analysis and improvement of data-driven fault diagnosis models under domain discrepancy base on a small modular reactor," Energy, Elsevier, vol. 316(C).
    16. Chen, Edward & Bao, Han & Dinh, Nam, 2024. "Evaluating the reliability of machine-learning-based predictions used in nuclear power plant instrumentation and control systems," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Dingyu & Wu, Hexin & Gou, Junli & Zhang, Bo & Shan, Jianqiang, 2025. "Performance analysis and improvement of data-driven fault diagnosis models under domain discrepancy base on a small modular reactor," Energy, Elsevier, vol. 316(C).
    2. Lam, J. & Cheung, L. & Han, Y. & Wang, S., 2018. "China’s Response to Nuclear Safety Post-Fukushima: Genuine or Rhetoric?," Cambridge Working Papers in Economics 1866, Faculty of Economics, University of Cambridge.
    3. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    4. Dai, Houde & Wang, Jiaxin & Huang, Yiyang & Lai, Yuan & Zhu, Liqi, 2024. "Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization," Renewable Energy, Elsevier, vol. 222(C).
    5. Čábelková, Inna & Strielkowski, Wadim & Streimikiene, Dalia & Cavallaro, Fausto & Streimikis, Justas, 2021. "The social acceptance of nuclear fusion for decision making towards carbon free circular economy: Evidence from Czech Republic," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    6. Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
    7. Shimada, Go, 2024. "Fukushima Daiichi nuclear power plant impact on regional economies from 1960 to 2010," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    8. Latré, Edwin & Perko, Tanja & Thijssen, Peter, 2017. "Public opinion change after the Fukushima nuclear accident: The role of national context revisited," Energy Policy, Elsevier, vol. 104(C), pages 124-133.
    9. Gong, Ying & Wang, Yongzheng & Xie, Yuanhang & Peng, Xuzhang & Peng, Yan & Zhang, Wenhua, 2025. "Dynamic fusion LSTM-Transformer for prediction in energy harvesting from human motions," Energy, Elsevier, vol. 327(C).
    10. Ma, Qiuju & Chen, Zhennan & Chen, Jianhua & Sun, Yubo & Chen, Nan & Du, Mengzhen, 2025. "Assist in real-time risk evaluation induced by electrical cabinet fires in nuclear power plants: A dual AI framework employing BiTCN and TCNN," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    11. Dai, Menghang & Liu, Zhiliang & Wang, Jinrui & Zuo, Mingjian, 2024. "Physics-driven feature alignment combined with dynamic distribution adaptation for three-cylinder drilling pump cross-speed fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    12. Zhao, Xiaoyu & Duan, Pengfei & Cao, Xiaodong & Xue, Qingwen & Zhao, Bingxu & Hu, Jinxue & Zhang, Chenyang & Yuan, Xiaoyang, 2025. "A probabilistic load forecasting method for multi-energy loads based on inflection point optimization and integrated feature screening," Energy, Elsevier, vol. 327(C).
    13. Peng, Tian & Song, Shihao & Suo, Leiming & Wang, Yuhan & Nazir, Muhammad Shahzad & Zhang, Chu, 2024. "Research and application of a novel graph convolutional RVFL and evolutionary equilibrium optimizer algorithm considering spatial factors in ultra-short-term solar power prediction," Energy, Elsevier, vol. 308(C).
    14. Erwan Hermawan & Usman Sudjadi, 2022. "Integrated Nuclear-Renewable Energy System for Industrialization in West Nusa Tenggara Province, Indonesia: Economic, Potential Site, and Policy Recommendation," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 146-159, July.
    15. Niels G. Mede, 2022. "Legacy media as inhibitors and drivers of public reservations against science: global survey evidence on the link between media use and anti-science attitudes," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    16. Shi, Mingjie & Xu, Jun & Lin, Chuanping & Mei, Xuesong, 2022. "A fast state-of-health estimation method using single linear feature for lithium-ion batteries," Energy, Elsevier, vol. 256(C).
    17. Chuanwang Sun & Nan Lyu & Xiaoling Ouyang, 2014. "Chinese Public Willingness to Pay to Avoid Having Nuclear Power Plants in the Neighborhood," Sustainability, MDPI, vol. 6(10), pages 1-27, October.
    18. Furlong, Aidan & Alsafadi, Farah & Palmtag, Scott & Godfrey, Andrew & Wu, Xu, 2025. "Data-driven prediction and uncertainty quantification of PWR crud-induced power shift using convolutional neural networks," Energy, Elsevier, vol. 316(C).
    19. Dapai Shi & Jingyuan Zhao & Chika Eze & Zhenghong Wang & Junbin Wang & Yubo Lian & Andrew F. Burke, 2023. "Cloud-Based Artificial Intelligence Framework for Battery Management System," Energies, MDPI, vol. 16(11), pages 1-21, May.
    20. Zhou, Shiqi & Lin, Meng & Huang, Shilong & Xiao, Kai, 2024. "Open set compound fault recognition method for nuclear power plant based on label mask weighted prototype learning," Applied Energy, Elsevier, vol. 369(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225018468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.