IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v6y2014i10p7197-7223d41315.html
   My bibliography  Save this article

Chinese Public Willingness to Pay to Avoid Having Nuclear Power Plants in the Neighborhood

Author

Listed:
  • Chuanwang Sun

    (Collaborative Innovation Center for Energy Economics and Energy Policy, School of Economics, Xiamen University, Xiamen 361005, China)

  • Nan Lyu

    (Collaborative Innovation Center for Energy Economics and Energy Policy, School of Economics, Xiamen University, Xiamen 361005, China)

  • Xiaoling Ouyang

    (Department of Economics, Business School, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China)

Abstract

In spite of the decreasing share of nuclear power all over the world, China resumed the approval of large-scale construction of nuclear power plants in 2012. However, influenced by the worldwide spreading anti-nuclear attitudes, people who live near nuclear power plants showed increasing concerns about nuclear risks. Consequently, the Not In My Backyard (NIMBY) syndrome of nuclear power plants should be evaluated prudently to support the healthy development of nuclear power in China. Based on the face-to-face survey data, this study estimates Chinese public willingness to pay (WTP) to avoid having nuclear power plants in the neighborhood. The respondents include both residents who currently live near and those who would live near nuclear power plants in the future. Considering the possible presence of the sample selection bias caused by protest responses, this paper constructs a two-step sample selection model with the protest responses and the double bounded dichotomous choice (DBDC) questions. Using the Contingent Valuation Method (CVM), we measure the effects of influencing factors of public WTP and study the decay of WTP with longer distances from nuclear power plants. The results suggest that most people are willing to pay higher electricity prices to avoid having nuclear power plants in the neighborhood. Comparing the WTP to avoid having nuclear power plants nearby with the current electricity price, we find that there is an increase of 56.7% and 69.1% of respondents’ WTP for a nuclear power plant located 80 km and 30 km, respectively.

Suggested Citation

  • Chuanwang Sun & Nan Lyu & Xiaoling Ouyang, 2014. "Chinese Public Willingness to Pay to Avoid Having Nuclear Power Plants in the Neighborhood," Sustainability, MDPI, vol. 6(10), pages 1-27, October.
  • Handle: RePEc:gam:jsusta:v:6:y:2014:i:10:p:7197-7223:d:41315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/6/10/7197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/6/10/7197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roh, Seungkook & Kim, Wonjoon, 2014. "How can Korea secure uranium enrichment and spent fuel reprocessing rights?," Energy Policy, Elsevier, vol. 68(C), pages 195-198.
    2. Heffron, Raphael J., 2013. "Nuclear new build in the United States 1990–2010: A three state analysis," Technological Forecasting and Social Change, Elsevier, vol. 80(5), pages 876-892.
    3. Sun, Chuanwang & Zhu, Xiting, 2014. "Evaluating the public perceptions of nuclear power in China: Evidence from a contingent valuation survey," Energy Policy, Elsevier, vol. 69(C), pages 397-405.
    4. Poe, Gregory L. & Vossler, Christian A., 2009. "Consequentiality and contingent values: an emerging paradigm," MPRA Paper 38864, University Library of Munich, Germany.
    5. Liao, Shu-Yi & Tseng, Wei-Chun & Chen, Chi-Chung, 2010. "Eliciting public preference for nuclear energy against the backdrop of global warming," Energy Policy, Elsevier, vol. 38(11), pages 7054-7069, November.
    6. He, Guizhen & Mol, Arthur P.J. & Zhang, Lei & Lu, Yonglong, 2013. "Public participation and trust in nuclear power development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 1-11.
    7. Jeff Bennett (ed.), 2011. "The International Handbook on Non-Market Environmental Valuation," Books, Edward Elgar Publishing, number 13490.
    8. Dominika Dziegielewska & Robert Mendelsohn, 2007. "Does “No” mean “No”? A protest methodology," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(1), pages 71-87, September.
    9. Kim, Younghwan & Kim, Wonjoon & Kim, Minki, 2014. "An international comparative analysis of public acceptance of nuclear energy," Energy Policy, Elsevier, vol. 66(C), pages 475-483.
    10. Heffron, Raphael J., 2013. "Nuclear energy policy in the United States 1990–2010: A federal or state responsibility?," Energy Policy, Elsevier, vol. 62(C), pages 254-266.
    11. Park, Eunil & Ohm, Jay Y., 2014. "Factors influencing the public intention to use renewable energy technologies in South Korea: Effects of the Fukushima nuclear accident," Energy Policy, Elsevier, vol. 65(C), pages 198-211.
    12. Laes, Erik & Meskens, Gaston & van der Sluijs, Jeroen P., 2011. "On the contribution of external cost calculations to energy system governance: The case of a potential large-scale nuclear accident," Energy Policy, Elsevier, vol. 39(9), pages 5664-5673, September.
    13. P. Calia & E. Strazzera, 1999. "A Sample Selection Model for Protest Non-Response Votes in Contingent Valuation Analyses," Working Paper CRENoS 199905, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    14. Timothy Haab, 1999. "Nonparticipation or Misspecification? The Impacts of Nonparticipation on Dichotomous Choice Contingent Valuation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 14(4), pages 443-461, December.
    15. Kim, Younghwan & Kim, Minki & Kim, Wonjoon, 2013. "Effect of the Fukushima nuclear disaster on global public acceptance of nuclear energy," Energy Policy, Elsevier, vol. 61(C), pages 822-828.
    16. Kunsch, Pierre L. & Friesewinkel, Jean, 2014. "Nuclear energy policy in Belgium after Fukushima," Energy Policy, Elsevier, vol. 66(C), pages 462-474.
    17. Pierre Louis Kunsch & Jean Friesewinkel, 2014. "Nuclear energy policy in Belgium after Fukushima," ULB Institutional Repository 2013/189447, ULB -- Universite Libre de Bruxelles.
    18. Homma, Takashi & Akimoto, Keigo, 2013. "Analysis of Japan's energy and environment strategy after the Fukushima nuclear plant accident," Energy Policy, Elsevier, vol. 62(C), pages 1216-1225.
    19. Yves Schneider & Peter Zweifel, 2005. "Spatial Effects in Willingness-to-Pay: The Case of Two Nuclear Risks," SOI - Working Papers 0502, Socioeconomic Institute - University of Zurich, revised Sep 2007.
    20. Masahiko Aoki & Geoffrey Rothwell, 2013. "A comparative institutional analysis of the Fukushima nuclear disaster: Lessons and policy implications," Chapters, in: Comparative Institutional Analysis, chapter 8, pages 105-132, Edward Elgar Publishing.
    21. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    22. Vincenzo Romanello & Massimo Salvatores & Aleksandra Schwenk-Ferrero & Fabrizio Gabrielli & Barbara Vezzoni & Andrei Rineiski & Concetta Fazio, 2012. "Sustainable Nuclear Fuel Cycles and World Regional Issues," Sustainability, MDPI, vol. 4(6), pages 1-25, June.
    23. van der Horst, Dan, 2007. "NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies," Energy Policy, Elsevier, vol. 35(5), pages 2705-2714, May.
    24. Siegrist, Michael & Visschers, Vivianne H.M., 2013. "Acceptance of nuclear power: The Fukushima effect," Energy Policy, Elsevier, vol. 59(C), pages 112-119.
    25. Dan Marsh & Lena Mkwara & Riccardo Scarpa, 2011. "Do Respondents’ Perceptions of the Status Quo Matter in Non-Market Valuation with Choice Experiments? An Application to New Zealand Freshwater Streams," Sustainability, MDPI, vol. 3(9), pages 1-23, September.
    26. Richard T. Carson, 2012. "Contingent Valuation: A Practical Alternative When Prices Aren't Available," Journal of Economic Perspectives, American Economic Association, vol. 26(4), pages 27-42, Fall.
    27. Jun, Eunju & Joon Kim, Won & Hoon Jeong, Yong & Heung Chang, Soon, 2010. "Measuring the social value of nuclear energy using contingent valuation methodology," Energy Policy, Elsevier, vol. 38(3), pages 1470-1476, March.
    28. Dalla Valle, Alessandra & Furlan, Claudia, 2014. "Diffusion of nuclear energy in some developing countries," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 143-153.
    29. Wolsink, Maarten, 2000. "Wind power and the NIMBY-myth: institutional capacity and the limited significance of public support," Renewable Energy, Elsevier, vol. 21(1), pages 49-64.
    30. Mitchell, Robert Cameron & Carson, Richard T, 1986. "Property Rights, Protest, and the Siting of Hazardous Waste Facilities," American Economic Review, American Economic Association, vol. 76(2), pages 285-290, May.
    31. R Kemp, 1990. "Why Not in My Backyard? A Radical Interpretation of Public Opposition to the Deep Disposal of Radioactive Waste in the United Kingdom," Environment and Planning A, , vol. 22(9), pages 1239-1258, September.
    32. Gawande, Kishore & Jenkins-Smith, Hank, 2001. "Nuclear Waste Transport and Residential Property Values: Estimating the Effects of Perceived Risks," Journal of Environmental Economics and Management, Elsevier, vol. 42(2), pages 207-233, September.
    33. Masahiko Aoki, 2013. "Comparative Institutional Analysis," Books, Edward Elgar Publishing, number 15474.
    34. Bird, Deanne K. & Haynes, Katharine & van den Honert, Rob & McAneney, John & Poortinga, Wouter, 2014. "Nuclear power in Australia: A comparative analysis of public opinion regarding climate change and the Fukushima disaster," Energy Policy, Elsevier, vol. 65(C), pages 644-653.
    35. Joshua M. Pearce, 2012. "Limitations of Nuclear Power as a Sustainable Energy Source," Sustainability, MDPI, vol. 4(6), pages 1-15, June.
    36. Hartmann, Patrick & Apaolaza, Vanessa & D'Souza, Clare & Echebarria, Carmen & Barrutia, Jose M., 2013. "Nuclear power threats, public opposition and green electricity adoption: Effects of threat belief appraisal and fear arousal," Energy Policy, Elsevier, vol. 62(C), pages 1366-1376.
    37. Srinivasan, T.N. & Gopi Rethinaraj, T.S., 2013. "Fukushima and thereafter: Reassessment of risks of nuclear power," Energy Policy, Elsevier, vol. 52(C), pages 726-736.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Xiong & Fanbin Kong & Ning Zhang & Ni Lei & Chuanwang Sun, 2018. "Analysis of the Factors Influencing Willingness to Pay and Payout Level for Ecological Environment Improvement of the Ganjiang River Basin," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    2. Qianwen Li & Ruyin Long & Hong Chen & Feiyu Chen & Xiu Cheng, 2019. "Chinese urban resident willingness to pay for green housing based on double-entry mental accounting theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 129-153, January.
    3. Jing Zeng & Jiuchang Wei & Dingtao Zhao & Weiwei Zhu & Jibao Gu, 2017. "Information-seeking intentions of residents regarding the risks of nuclear power plant: an empirical study in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 739-755, June.
    4. Zhou, Hui & Bukenya, James O., 2016. "Information inefficiency and willingness-to-pay for energy-efficient technology: A stated preference approach for China Energy Label," Energy Policy, Elsevier, vol. 91(C), pages 12-21.
    5. Ju-Hee Kim & Young-Kuk Kim & Seung-Hoon Yoo, 2023. "Does Proximity to a Power Plant Affect Housing Property Values of a City in South Korea? An Empirical Investigation," Energies, MDPI, vol. 16(4), pages 1-14, February.
    6. Rehdanz, Katrin & Schröder, Carsten & Narita, Daiju & Okubo, Toshihiro, 2017. "Public preferences for alternative electricity mixes in post-Fukushima Japan," Energy Economics, Elsevier, vol. 65(C), pages 262-270.
    7. Yongrok Choi & Ning Zhang, 2015. "Introduction to the Special Issue on “the Sustainable Asia Conference 2014”," Sustainability, MDPI, vol. 7(2), pages 1-8, February.
    8. Ouyang, Xiaoling & Zhuang, Wuxu & Sun, Chuanwang, 2019. "Haze, health, and income: An integrated model for willingness to pay for haze mitigation in Shanghai, China," Energy Economics, Elsevier, vol. 84(C).
    9. Guizhi Wang & Yingxi Song & Jibo Chen & Jun Yu, 2016. "Valuation of Haze Management and Prevention Using the Contingent Valuation Method with the Sure Independence Screening Algorithm," Sustainability, MDPI, vol. 8(4), pages 1-11, March.
    10. Meishu Wang & Hui Gong, 2018. "Not-in-My-Backyard: Legislation Requirements and Economic Analysis for Developing Underground Wastewater Treatment Plant in China," IJERPH, MDPI, vol. 15(11), pages 1-10, October.
    11. Eva Crespo-Cebada & Carlos Díaz-Caro & María Teresa Nevado Gil & Ángel Sabino Mirón Sanguino, 2020. "Does Water Pollution Influence Willingness to Accept the Installation of a Mine Near a City? Case Study of an Open-Pit Lithium Mine," Sustainability, MDPI, vol. 12(24), pages 1-13, December.
    12. Sung-Yoon Huh & JongRoul Woo & Chul-Yong Lee, 2019. "What Do Potential Residents Really Want When Hosting a Nuclear Power Plant? An Empirical Study of Economic Incentives in South Korea," Energies, MDPI, vol. 12(7), pages 1-17, March.
    13. Tan, Ruipeng & Lin, Boqiang, 2019. "Public perception of new energy vehicles: Evidence from willingness to pay for new energy bus fares in China," Energy Policy, Elsevier, vol. 130(C), pages 347-354.
    14. Rongrong Zheng & Jiasui Zhan & Luxing Liu & Yanli Ma & Zishuai Wang & Lianhui Xie & Dunchun He, 2019. "Factors and Minimal Subsidy Associated with Tea Farmers’ Willingness to Adopt Ecological Pest Management," Sustainability, MDPI, vol. 11(22), pages 1-12, November.
    15. Chuanwang Sun & Xiaochun Meng & Shuijun Peng, 2017. "Effects of Waste-to-Energy Plants on China’s Urbanization: Evidence from a Hedonic Price Analysis in Shenzhen," Sustainability, MDPI, vol. 9(3), pages 1-18, March.
    16. Qingduo Mao & Manli Zhang & Ben Ma, 2018. "Benefit and Risk Perceptions of Controversial Facilities: A Comparison between Local Officials and the Public in China," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    17. JongRoul Woo & Sesil Lim & Yong-Gil Lee & Sung-Yoon Huh, 2018. "Financial Feasibility and Social Acceptance for Reducing Nuclear Power Plants: A Contingent Valuation Study," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    18. Sun, Chuanwang & Yuan, Xiang & Yao, Xin, 2016. "Social acceptance towards the air pollution in China: Evidence from public's willingness to pay for smog mitigation," Energy Policy, Elsevier, vol. 92(C), pages 313-324.
    19. Ralitza Dimova & Ulrike Grote & Arnab Basu, 2022. "Long-term behavioral responses to man-made disasters: Insights from the Agent Orange experiment in Vietnam," TVSEP Working Papers wp-024, Leibniz Universitaet Hannover, Institute of Development and Agricultural Economics, Project TVSEP.
    20. Min-Kyu Lee & Ju-Hee Kim & Seung-Hoon Yoo, 2018. "Public Willingness to Pay for Increasing Photovoltaic Power Generation: The Case of Korea," Sustainability, MDPI, vol. 10(4), pages 1-11, April.
    21. John J. Laureto & Joshua M. Pearce, 2016. "Nuclear Insurance Subsidies Cost from Post-Fukushima Accounting Based on Media Sources," Sustainability, MDPI, vol. 8(12), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Chuanwang & Zhu, Xiting & Meng, Xiaochun, 2016. "Post-Fukushima public acceptance on resuming the nuclear power program in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 685-694.
    2. Sun, Chuanwang & Zhu, Xiting, 2014. "Evaluating the public perceptions of nuclear power in China: Evidence from a contingent valuation survey," Energy Policy, Elsevier, vol. 69(C), pages 397-405.
    3. Contu, Davide & Strazzera, Elisabetta & Mourato, Susana, 2016. "Modeling individual preferences for energy sources: The case of IV generation nuclear energy in Italy," Ecological Economics, Elsevier, vol. 127(C), pages 37-58.
    4. Okubo, Toshihiro & Narita, Daiju & Rehdanz, Katrin & Schröder, Carsten, 2020. "Preferences for Nuclear Power in Post-Fukushima Japan: Evidence from a Large Nationwide Household Survey," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 13(11).
    5. Nomsa Phindile Nkosi & Johane Dikgang, 2021. "South African Attitudes About Nuclear Power: The Case of the Nuclear Energy Expansion," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 138-146.
    6. Zeng, Ming & Wang, Shicheng & Duan, Jinhui & Sun, Jinghui & Zhong, Pengyuan & Zhang, Yingjie, 2016. "Review of nuclear power development in China: Environment analysis, historical stages, development status, problems and countermeasures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1369-1383.
    7. Guo, Yue & Ren, Tao, 2017. "When it is unfamiliar to me: Local acceptance of planned nuclear power plants in China in the post-fukushima era," Energy Policy, Elsevier, vol. 100(C), pages 113-125.
    8. Bjoern Hagen & Adenike Opejin & K. David Pijawka, 2022. "Risk Perceptions and Amplification Effects over Time: Evaluating Fukushima Longitudinal Surveys," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    9. Burgherr, Peter & Hirschberg, Stefan, 2014. "Comparative risk assessment of severe accidents in the energy sector," Energy Policy, Elsevier, vol. 74(S1), pages 45-56.
    10. Kosai, Shoki & Yamasue, Eiji, 2019. "Recommendation to ASEAN nuclear development based on lessons learnt from the Fukushima nuclear accident," Energy Policy, Elsevier, vol. 129(C), pages 628-635.
    11. Uji, Azusa & Prakash, Aseem & Song, Jaehyun, 2021. "Does the “NIMBY syndrome” undermine public support for nuclear power in Japan?," Energy Policy, Elsevier, vol. 148(PA).
    12. Ozcan, Mustafa, 2019. "Factors influencing the electricity generation preferences of Turkish citizens: Citizens' attitudes and policy recommendations in the context of climate change and environmental impact," Renewable Energy, Elsevier, vol. 132(C), pages 381-393.
    13. JongRoul Woo & Sesil Lim & Yong-Gil Lee & Sung-Yoon Huh, 2018. "Financial Feasibility and Social Acceptance for Reducing Nuclear Power Plants: A Contingent Valuation Study," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    14. Wang, Jing & Li, Yazhou & Wu, Jianlin & Gu, Jibao & Xu, Shuo, 2020. "Environmental beliefs and public acceptance of nuclear energy in China: A moderated mediation analysis," Energy Policy, Elsevier, vol. 137(C).
    15. Ocelík, Petr & Osička, Jan & Zapletalová, Veronika & Černoch, Filip & Dančák, Břetislav, 2017. "Local opposition and acceptance of a deep geological repository of radioactive waste in the Czech Republic: A frame analysis," Energy Policy, Elsevier, vol. 105(C), pages 458-466.
    16. Sun, Chuanwang & Yuan, Xiang & Yao, Xin, 2016. "Social acceptance towards the air pollution in China: Evidence from public's willingness to pay for smog mitigation," Energy Policy, Elsevier, vol. 92(C), pages 313-324.
    17. Salvador Saz-Salazar & Miguel García-Rubio & Francisco González-Gómez & Andrés Picazo-Tadeo, 2016. "Managing Water Resources Under Conditions of Scarcity: On Consumers’ Willingness to Pay for Improving Water Supply Infrastructure," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1723-1738, March.
    18. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    19. Sung-Yoon Huh & JongRoul Woo & Chul-Yong Lee, 2019. "What Do Potential Residents Really Want When Hosting a Nuclear Power Plant? An Empirical Study of Economic Incentives in South Korea," Energies, MDPI, vol. 12(7), pages 1-17, March.
    20. Mu, Ruimin & Zuo, Jian & Yuan, Xueliang, 2015. "China's approach to nuclear safety — From the perspective of policy and institutional system," Energy Policy, Elsevier, vol. 76(C), pages 161-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:6:y:2014:i:10:p:7197-7223:d:41315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.