IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123018220.html
   My bibliography  Save this article

Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization

Author

Listed:
  • Dai, Houde
  • Wang, Jiaxin
  • Huang, Yiyang
  • Lai, Yuan
  • Zhu, Liqi

Abstract

To enhance the model estimation performance and minimize the possibility of overfitting, we propose a statistical optimization strategy of healthy features (HFs) for estimating the state-of-health (SOH) of lithium-ion batteries (LIBs). Firstly, a series of initial HFs were extracted from the voltage, current, temperature, incremental capacity (IC) curves, and differential thermal voltammetry (DTV) curves according to the battery characteristics. Secondly, the six statistical features (i.e., mean, median, lower quartile, range, upper quartile, and standard deviation) of the initial HFs for each charge cycle were calculated. Thirdly, to minimize the impact of redundant features and noise, the optimal HF set was identified by a comparative analysis among different combinations of the six statistical features. Thus, the battery SOH can be estimated using the dual-kernel Gaussian process regression (GPR), which improves the estimation accuracy and generalization ability of the single-kernel GPR. To prevent estimation errors due to manual adjustments, the GPR hyperparameters were optimized via the northern goshawk optimization (NGO) algorithm. Experiments were conducted on the NASA and Oxford datasets, with most estimation errors below 1%. Experimental results demonstrate the lightweight NGO-Dualkernel-GPR model, by incorporating the statistical feature optimization strategy, achieves exceptional SOH estimation performance for different LIBs.

Suggested Citation

  • Dai, Houde & Wang, Jiaxin & Huang, Yiyang & Lai, Yuan & Zhu, Liqi, 2024. "Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018220
    DOI: 10.1016/j.renene.2023.119907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123018220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.