IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v120y2017icp975-984.html
   My bibliography  Save this article

A lead-acid battery's remaining useful life prediction by using electrochemical model in the Particle Filtering framework

Author

Listed:
  • Lyu, Chao
  • Lai, Qingzhi
  • Ge, Tengfei
  • Yu, Honghai
  • Wang, Lixin
  • Ma, Na

Abstract

Accurate prediction of battery's remaining useful life (RUL) is significant for the reliability and the cost of systems. This paper presents a new Particle Filter (PF) framework for lead-acid battery's RUL prediction by incorporating the battery's electrochemical model. An electrochemical model that simulates the charging and discharging of lead-acid battery is introduced. The effectiveness of both the model and parameter identification is validated through both synthetic and experimental data. In the new PF framework, model parameters that reflect the degradation of battery are seen as state variables, the procedure of capacity simulation and the fitting equations of known state variables are measurement model and process model respectively. Aging experiment is depicted and applied to validate the effectiveness of the method. RUL predictions are made with two different beginning points, the results of which show that the new electrochemical-model-based PF has better state variable stability and prediction accuracy than the traditional data-driven PF.

Suggested Citation

  • Lyu, Chao & Lai, Qingzhi & Ge, Tengfei & Yu, Honghai & Wang, Lixin & Ma, Na, 2017. "A lead-acid battery's remaining useful life prediction by using electrochemical model in the Particle Filtering framework," Energy, Elsevier, vol. 120(C), pages 975-984.
  • Handle: RePEc:eee:energy:v:120:y:2017:i:c:p:975-984
    DOI: 10.1016/j.energy.2016.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216318084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Chao & Jain, Gaurav & Tamirisa, Prabhakar & Gorka, Tom, 2014. "Method for estimating capacity and predicting remaining useful life of lithium-ion battery," Applied Energy, Elsevier, vol. 126(C), pages 182-189.
    2. Hu, Xiaosong & Li, Shengbo Eben & Jia, Zhenzhong & Egardt, Bo, 2014. "Enhanced sample entropy-based health management of Li-ion battery for electrified vehicles," Energy, Elsevier, vol. 64(C), pages 953-960.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Hao & He, Hongwen & Bai, Yunfei & Yue, Hongwei, 2022. "Parameterized deep Q-network based energy management with balanced energy economy and battery life for hybrid electric vehicles," Applied Energy, Elsevier, vol. 320(C).
    2. Qian, Cheng & Xu, Binghui & Xia, Quan & Ren, Yi & Sun, Bo & Wang, Zili, 2023. "SOH prediction for Lithium-Ion batteries by using historical state and future load information with an AM-seq2seq model," Applied Energy, Elsevier, vol. 336(C).
    3. Shen, Dongxu & Wu, Lifeng & Kang, Guoqing & Guan, Yong & Peng, Zhen, 2021. "A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current," Energy, Elsevier, vol. 218(C).
    4. Wang, Shuai & Ma, Hongyan & Zhang, Yingda & Li, Shengyan & He, Wei, 2023. "Remaining useful life prediction method of lithium-ion batteries is based on variational modal decomposition and deep learning integrated approach," Energy, Elsevier, vol. 282(C).
    5. Ma, Yan & Shan, Ce & Gao, Jinwu & Chen, Hong, 2022. "A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction," Energy, Elsevier, vol. 251(C).
    6. Wang, Zhe & Yang, Fangfang & Xu, Qiang & Wang, Yongjian & Yan, Hong & Xie, Min, 2023. "Capacity estimation of lithium-ion batteries based on data aggregation and feature fusion via graph neural network," Applied Energy, Elsevier, vol. 336(C).
    7. Yang, Ruixin & Xiong, Rui & Ma, Suxiao & Lin, Xinfan, 2020. "Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks," Applied Energy, Elsevier, vol. 260(C).
    8. Chuang Sheng & Yi Zheng & Rui Tian & Qian Xiang & Zhonghua Deng & Xiaowei Fu & Xi Li, 2023. "A Comparative Study of the Kalman Filter and the LSTM Network for the Remaining Useful Life Prediction of SOFC," Energies, MDPI, vol. 16(9), pages 1-16, April.
    9. Pei, Pucheng & Zhou, Qibin & Wu, Lei & Wu, Ziyao & Hua, Jianfeng & Fan, Huimin, 2020. "Capacity estimation for lithium-ion battery using experimental feature interval approach," Energy, Elsevier, vol. 203(C).
    10. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    11. Olabi, A.G. & Wilberforce, Tabbi & Sayed, Enas Taha & Abo-Khalil, Ahmed G. & Maghrabie, Hussein M. & Elsaid, Khaled & Abdelkareem, Mohammad Ali, 2022. "Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission," Energy, Elsevier, vol. 254(PA).
    12. Zheng, Jianfei & Ren, Jincheng & Zhang, Jianxun & Pei, Hong & Zhang, Zhengxin, 2023. "A lifetime prediction method for Lithium-ion batteries considering storage degradation of spare parts," Energy, Elsevier, vol. 282(C).
    13. Shaheer Ansari & Afida Ayob & Molla Shahadat Hossain Lipu & Aini Hussain & Mohamad Hanif Md Saad, 2021. "Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach," Sustainability, MDPI, vol. 13(23), pages 1-25, December.
    14. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Qin, Taichun, 2019. "State of health estimation of lithium-ion batteries based on the constant voltage charging curve," Energy, Elsevier, vol. 167(C), pages 661-669.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Dong, Guangzhong & Zhang, Xu & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state of energy estimation of lithium-ion batteries based on neural network model," Energy, Elsevier, vol. 90(P1), pages 879-888.
    3. Patil, Meru A. & Tagade, Piyush & Hariharan, Krishnan S. & Kolake, Subramanya M. & Song, Taewon & Yeo, Taejung & Doo, Seokgwang, 2015. "A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation," Applied Energy, Elsevier, vol. 159(C), pages 285-297.
    4. Cheng, Yujie & Lu, Chen & Li, Tieying & Tao, Laifa, 2015. "Residual lifetime prediction for lithium-ion battery based on functional principal component analysis and Bayesian approach," Energy, Elsevier, vol. 90(P2), pages 1983-1993.
    5. Ren, Hongbin & Zhao, Yuzhuang & Chen, Sizhong & Wang, Taipeng, 2019. "Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation," Energy, Elsevier, vol. 166(C), pages 908-917.
    6. Berecibar, M. & Gandiaga, I. & Villarreal, I. & Omar, N. & Van Mierlo, J. & Van den Bossche, P., 2016. "Critical review of state of health estimation methods of Li-ion batteries for real applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 572-587.
    7. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    8. Shen, Sheng & Sadoughi, Mohammadkazem & Li, Meng & Wang, Zhengdao & Hu, Chao, 2020. "Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 260(C).
    9. Singh, Karanjot & Tjahjowidodo, Tegoeh & Boulon, Loïc & Feroskhan, Mir, 2022. "Framework for measurement of battery state-of-health (resistance) integrating overpotential effects and entropy changes using energy equilibrium," Energy, Elsevier, vol. 239(PA).
    10. Yao, Lei & Fang, Zhanpeng & Xiao, Yanqiu & Hou, Junjian & Fu, Zhijun, 2021. "An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine," Energy, Elsevier, vol. 214(C).
    11. Ruan, Jiageng & Walker, Paul D. & Watterson, Peter A. & Zhang, Nong, 2016. "The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle," Applied Energy, Elsevier, vol. 183(C), pages 1240-1258.
    12. Xiong, Dongbin & Li, Xifei & Shan, Hui & Yan, Bo & Li, Dejun & Langford, Craig & Sun, Xueliang, 2016. "Scalable synthesis of functionalized graphene as cathodes in Li-ion electrochemical energy storage devices," Applied Energy, Elsevier, vol. 175(C), pages 512-521.
    13. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    14. Jikai Bi & Jae-Cheon Lee & Hao Liu, 2022. "Performance Comparison of Long Short-Term Memory and a Temporal Convolutional Network for State of Health Estimation of a Lithium-Ion Battery using Its Charging Characteristics," Energies, MDPI, vol. 15(7), pages 1-24, March.
    15. Huang, Yanjun & Khajepour, Amir & Ding, Haitao & Bagheri, Farshid & Bahrami, Majid, 2017. "An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems," Applied Energy, Elsevier, vol. 188(C), pages 576-585.
    16. Ansari, Amir Babak & Esfahanian, Vahid & Torabi, Farschad, 2016. "Discharge, rest and charge simulation of lead-acid batteries using an efficient reduced order model based on proper orthogonal decomposition," Applied Energy, Elsevier, vol. 173(C), pages 152-167.
    17. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    18. Bizhong Xia & Guanghao Chen & Jie Zhou & Yadi Yang & Rui Huang & Wei Wang & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2019. "Online Parameter Identification and Joint Estimation of the State of Charge and the State of Health of Lithium-Ion Batteries Considering the Degree of Polarization," Energies, MDPI, vol. 12(15), pages 1-20, July.
    19. Hu, Chao & Jain, Gaurav & Zhang, Puqiang & Schmidt, Craig & Gomadam, Parthasarathy & Gorka, Tom, 2014. "Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery," Applied Energy, Elsevier, vol. 129(C), pages 49-55.
    20. Xiaoyu Li & Xing Shu & Jiangwei Shen & Renxin Xiao & Wensheng Yan & Zheng Chen, 2017. "An On-Board Remaining Useful Life Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles," Energies, MDPI, vol. 10(5), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:120:y:2017:i:c:p:975-984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.