IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i5p2897-2937d35609.html
   My bibliography  Save this article

Battery Management System—Balancing Modularization Based on a Single Switched Capacitor and Bi-Directional DC/DC Converter with the Auxiliary Battery

Author

Listed:
  • Mohamed Daowd

    (Department of Electrical Engineering and Energy Technology, Vrije Universiteit Brussel, Pleinlaan 2, Brussel 1050, Belgium)

  • Mailier Antoine

    (Department of Electrical Engineering and Energy Technology, Vrije Universiteit Brussel, Pleinlaan 2, Brussel 1050, Belgium)

  • Noshin Omar

    (Department of Electrical Engineering and Energy Technology, Vrije Universiteit Brussel, Pleinlaan 2, Brussel 1050, Belgium)

  • Philippe Lataire

    (Department of Electrical Engineering and Energy Technology, Vrije Universiteit Brussel, Pleinlaan 2, Brussel 1050, Belgium)

  • Peter Van Den Bossche

    (Department of Electrical Engineering and Energy Technology, Vrije Universiteit Brussel, Pleinlaan 2, Brussel 1050, Belgium)

  • Joeri Van Mierlo

    (Department of Electrical Engineering and Energy Technology, Vrije Universiteit Brussel, Pleinlaan 2, Brussel 1050, Belgium)

Abstract

Lithium-based batteries are considered as the most advanced batteries technology, which can be designed for high energy or high power storage systems. However, the battery cells are never fully identical due to the fabrication process, surrounding environment factors and differences between the cells tend to grow if no measures are taken. In order to have a high performance battery system, the battery cells should be continuously balanced for maintain the variation between the cells as small as possible. Without an appropriate balancing system, the individual cell voltages will differ over time and battery system capacity will decrease quickly. These issues will limit the electric range of the electric vehicle (EV) and some cells will undergo higher stress, whereby the cycle life of these cells will be shorter. Quite a lot of cell balancing/equalization topologies have been previously proposed. These balancing topologies can be categorized into passive and active balancing. Active topologies are categorized according to the active element used for storing the energy such as capacitor and/or inductive component as well as controlling switches or converters. This paper proposes an intelligent battery management system (BMS) including a battery pack charging and discharging control with a battery pack thermal management system. The BMS user input/output interfacing. The battery balancing system is based on battery pack modularization architecture. The proposed modularized balancing system has different equalization systems that operate inside and outside the modules. Innovative single switched capacitor (SSC) control strategy is proposed to balance between the battery cells in the module (inside module balancing, IMB). Novel utilization of isolated bidirectional DC/DC converter (IBC) is proposed to balance between the modules with the aid of the EV auxiliary battery (AB). Finally an experimental step-up has been implemented for the validation of the proposed balancing system.

Suggested Citation

  • Mohamed Daowd & Mailier Antoine & Noshin Omar & Philippe Lataire & Peter Van Den Bossche & Joeri Van Mierlo, 2014. "Battery Management System—Balancing Modularization Based on a Single Switched Capacitor and Bi-Directional DC/DC Converter with the Auxiliary Battery," Energies, MDPI, vol. 7(5), pages 1-41, April.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:5:p:2897-2937:d:35609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/5/2897/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/5/2897/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Daowd & Mailier Antoine & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2013. "Single Switched Capacitor Battery Balancing System Enhancements," Energies, MDPI, vol. 6(4), pages 1-26, April.
    2. Sun, Fengchun & Hu, Xiaosong & Zou, Yuan & Li, Siguang, 2011. "Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles," Energy, Elsevier, vol. 36(5), pages 3531-3540.
    3. Hu, Xiaosong & Li, Shengbo Eben & Jia, Zhenzhong & Egardt, Bo, 2014. "Enhanced sample entropy-based health management of Li-ion battery for electrified vehicles," Energy, Elsevier, vol. 64(C), pages 953-960.
    4. Noshin Omar & Mohamed Daowd & Omar Hegazy & Grietus Mulder & Jean-Marc Timmermans & Thierry Coosemans & Peter Van den Bossche & Joeri Van Mierlo, 2012. "Standardization Work for BEV and HEV Applications: Critical Appraisal of Recent Traction Battery Documents," Energies, MDPI, vol. 5(1), pages 1-19, January.
    5. Noshin Omar & Mohamed Daowd & Peter van den Bossche & Omar Hegazy & Jelle Smekens & Thierry Coosemans & Joeri van Mierlo, 2012. "Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles—Assessment of Electrical Characteristics," Energies, MDPI, vol. 5(8), pages 1-37, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Maobing & Xu, Hui & Li, Weimin & Liu, Yin & Li, Fade & Hu, Yue & Liu, Li, 2016. "The structure and control method of hybrid power source for electric vehicle," Energy, Elsevier, vol. 112(C), pages 1273-1285.
    2. Jichao Hong & Zhenpo Wang & Peng Liu, 2017. "Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 10(7), pages 1-16, July.
    3. P. Sathishkumar & Himanshu & Shengxu Piao & Muhammad Adil Khan & Do-Hyun Kim & Min-Soo Kim & Dong-Keun Jeong & Cheewoo Lee & Hee-Je Kim, 2017. "A Blended SPS-ESPS Control DAB-IBDC Converter for a Standalone Solar Power System," Energies, MDPI, vol. 10(9), pages 1-19, September.
    4. Cheng Lin & Hao Mu & Li Zhao & Wanke Cao, 2015. "A New Data-Stream-Mining-Based Battery Equalization Method," Energies, MDPI, vol. 8(7), pages 1-23, June.
    5. Cuidong Xu & Ka Wai Eric Cheng, 2015. "A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation," Energies, MDPI, vol. 8(10), pages 1-19, September.
    6. Xintian Liu & Yafei Sun & Yao He & Xinxin Zheng & Guojian Zeng & Jiangfeng Zhang, 2017. "Battery Equalization by Fly-Back Transformers with Inductance, Capacitance and Diode Absorbing Circuits," Energies, MDPI, vol. 10(10), pages 1-16, September.
    7. Joelton Deonei Gotz & João Eustáquio Machado Neto & José Rodolfo Galvão & Taysa Millena Banik Marques & Hugo Valadares Siqueira & Emilson Ribeiro Viana & Manoel H. N. Marinho & Mohamed A. Mohamed & Ad, 2023. "Studying Abuse Testing on Lithium-Ion Battery Packaging for Energy Storage Systems," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    8. Chein-Chung Sun & Chun-Hung Chou & Yu-Liang Lin & Yu-Hua Huang, 2022. "A Cost-Effective Passive/Active Hybrid Equalizer Circuit Design," Energies, MDPI, vol. 15(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar, Noshin & Monem, Mohamed Abdel & Firouz, Yousef & Salminen, Justin & Smekens, Jelle & Hegazy, Omar & Gaulous, Hamid & Mulder, Grietus & Van den Bossche, Peter & Coosemans, Thierry & Van Mierlo, J, 2014. "Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model," Applied Energy, Elsevier, vol. 113(C), pages 1575-1585.
    2. Berecibar, M. & Gandiaga, I. & Villarreal, I. & Omar, N. & Van Mierlo, J. & Van den Bossche, P., 2016. "Critical review of state of health estimation methods of Li-ion batteries for real applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 572-587.
    3. Singh, Karanjot & Tjahjowidodo, Tegoeh & Boulon, Loïc & Feroskhan, Mir, 2022. "Framework for measurement of battery state-of-health (resistance) integrating overpotential effects and entropy changes using energy equilibrium," Energy, Elsevier, vol. 239(PA).
    4. Dong, Guangzhong & Zhang, Xu & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state of energy estimation of lithium-ion batteries based on neural network model," Energy, Elsevier, vol. 90(P1), pages 879-888.
    5. Zheng, Linfeng & Zhu, Jianguo & Lu, Dylan Dah-Chuan & Wang, Guoxiu & He, Tingting, 2018. "Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries," Energy, Elsevier, vol. 150(C), pages 759-769.
    6. Mohamed Abdel-Monem & Omar Hegazy & Noshin Omar & Khiem Trad & Sven De Breucker & Peter Van Den Bossche & Joeri Van Mierlo, 2016. "Design and Analysis of Generic Energy Management Strategy for Controlling Second-Life Battery Systems in Stationary Applications," Energies, MDPI, vol. 9(11), pages 1-25, October.
    7. Hoque, M.M. & Hannan, M.A. & Mohamed, A. & Ayob, A., 2017. "Battery charge equalization controller in electric vehicle applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1363-1385.
    8. Yang, Fangfang & Xing, Yinjiao & Wang, Dong & Tsui, Kwok-Leung, 2016. "A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile," Applied Energy, Elsevier, vol. 164(C), pages 387-399.
    9. Huang, Yanjun & Khajepour, Amir & Bagheri, Farshid & Bahrami, Majid, 2016. "Optimal energy-efficient predictive controllers in automotive air-conditioning/refrigeration systems," Applied Energy, Elsevier, vol. 184(C), pages 605-618.
    10. Galeotti, Matteo & Cinà, Lucio & Giammanco, Corrado & Cordiner, Stefano & Di Carlo, Aldo, 2015. "Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy," Energy, Elsevier, vol. 89(C), pages 678-686.
    11. Kang, Jianqiang & Yan, Fuwu & Zhang, Pei & Du, Changqing, 2014. "Comparison of comprehensive properties of Ni-MH (nickel-metal hydride) and Li-ion (lithium-ion) batteries in terms of energy efficiency," Energy, Elsevier, vol. 70(C), pages 618-625.
    12. Cheng, Yujie & Lu, Chen & Li, Tieying & Tao, Laifa, 2015. "Residual lifetime prediction for lithium-ion battery based on functional principal component analysis and Bayesian approach," Energy, Elsevier, vol. 90(P2), pages 1983-1993.
    13. Nima Lotfi & Poria Fajri & Samuel Novosad & Jack Savage & Robert G. Landers & Mehdi Ferdowsi, 2013. "Development of an Experimental Testbed for Research in Lithium-Ion Battery Management Systems," Energies, MDPI, vol. 6(10), pages 1-28, October.
    14. Yanhui, Zhang & Wenji, Song & Guoqing, Xu, 2014. "Relaxation effect analysis on the initial state of charge for LiNi0.5Co0.2Mn0.3O2/graphite battery," Energy, Elsevier, vol. 74(C), pages 368-373.
    15. Firouz, Y. & Relan, R. & Timmermans, J.M. & Omar, N. & Van den Bossche, P. & Van Mierlo, J., 2016. "Advanced lithium ion battery modeling and nonlinear analysis based on robust method in frequency domain: Nonlinear characterization and non-parametric modeling," Energy, Elsevier, vol. 106(C), pages 602-617.
    16. Saw, Lip Huat & Ye, Yonghuang & Tay, Andrew A.O. & Chong, Wen Tong & Kuan, Seng How & Yew, Ming Chian, 2016. "Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling," Applied Energy, Elsevier, vol. 177(C), pages 783-792.
    17. Ming Zhang & Dongfang Yang & Jiaxuan Du & Hanlei Sun & Liwei Li & Licheng Wang & Kai Wang, 2023. "A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms," Energies, MDPI, vol. 16(7), pages 1-28, March.
    18. Ren, Hongbin & Zhao, Yuzhuang & Chen, Sizhong & Wang, Taipeng, 2019. "Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation," Energy, Elsevier, vol. 166(C), pages 908-917.
    19. Alexandros Nikolian & Yousef Firouz & Rahul Gopalakrishnan & Jean-Marc Timmermans & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2016. "Lithium Ion Batteries—Development of Advanced Electrical Equivalent Circuit Models for Nickel Manganese Cobalt Lithium-Ion," Energies, MDPI, vol. 9(5), pages 1-23, May.
    20. Sandra Castano-Solis & Daniel Serrano-Jimenez & Lucia Gauchia & Javier Sanz, 2017. "The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs," Energies, MDPI, vol. 10(3), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:5:p:2897-2937:d:35609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.