IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v172y2023ics0301421522005262.html
   My bibliography  Save this article

Energy structure dividend, factor allocation efficiency and regional productivity growth-- An empirical examination of energy restructuring in China

Author

Listed:
  • Hongjun, Guan
  • Liye, Dong
  • Aiwu, Zhao

Abstract

This paper introduces the energy structure variables into the generalized cost function from the dual perspective of energy "structural dividend" and factor allocation distortion. It quantitatively estimates the factor allocative efficiency, cost elasticity and marginal cost of the energy decarbonization practice in China from 2004 to 2019. Estimation results show that: (i) there is a "structural dividend" effect of energy restructuring in China. On average, a 1% increase in the level of decarbonization of the energy structure reduces the total cost by 0.57% and the marginal cost by 5.846 billion yuan. Specifically, a 1% reduction in the share of coal consumption reduces the marginal cost by 4.590 billion yuan. (ii)Energy restructuring has accelerated factor allocation distortions in recent years. In terms of the impact of energy decarbonization on productivity growth, the inhibition of factor allocation distortion on productivity growth mainly comes from scale effect. (iii)Energy restructuring has a heterogeneous impact on productivity growth across provinces. Productivity growth in energy-consuming regions is lower than that in energy-supplying regions, while the regions where factor allocation distortions have a greater impact on productivity growth are mostly found in the central and western parts of the country where factor markets are less developed.

Suggested Citation

  • Hongjun, Guan & Liye, Dong & Aiwu, Zhao, 2023. "Energy structure dividend, factor allocation efficiency and regional productivity growth-- An empirical examination of energy restructuring in China," Energy Policy, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:enepol:v:172:y:2023:i:c:s0301421522005262
    DOI: 10.1016/j.enpol.2022.113307
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522005262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.113307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kangjuan Lv & Anyu Yu & Yiwen Bian, 2017. "Regional energy efficiency and its determinants in China during 2001–2010: a slacks-based measure and spatial econometric analysis," Journal of Productivity Analysis, Springer, vol. 47(1), pages 65-81, February.
    2. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," Omega, Elsevier, vol. 63(C), pages 48-59.
    3. Zhu, Bangzhu & Zhang, Mengfan & Zhou, Yanhua & Wang, Ping & Sheng, Jichuan & He, Kaijian & Wei, Yi-Ming & Xie, Rui, 2019. "Exploring the effect of industrial structure adjustment on interprovincial green development efficiency in China: A novel integrated approach," Energy Policy, Elsevier, vol. 134(C).
    4. Zhu, Weiwei & Zhu, Yaqin & Lin, Huaping & Yu, Yu, 2021. "Technology progress bias, industrial structure adjustment, and regional industrial economic growth motivation —— Research on regional industrial transformation and upgrading based on the effect of lea," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    5. Peneder, Michael, 2003. "Industrial structure and aggregate growth," Structural Change and Economic Dynamics, Elsevier, vol. 14(4), pages 427-448, December.
    6. Chen, Yingwen & Wong, Christina W.Y. & Yang, Rui & Miao, Xin, 2021. "Optimal structure adjustment strategy, emission reduction potential and utilization efficiency of fossil energies in China," Energy, Elsevier, vol. 237(C).
    7. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin & Jiang, Hongdian, 2022. "How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China," Energy Economics, Elsevier, vol. 105(C).
    8. Timmer, Marcel P. & Szirmai, Adam, 2000. "Productivity growth in Asian manufacturing: the structural bonus hypothesis examined," Structural Change and Economic Dynamics, Elsevier, vol. 11(4), pages 371-392, December.
    9. Wang, Bin & Yu, Minxiu & Zhu, Yucheng & Bao, Pinjuan, 2021. "Unveiling the driving factors of carbon emissions from industrial resource allocation in China: A spatial econometric perspective," Energy Policy, Elsevier, vol. 158(C).
    10. Halvorsen, Robert & Smith, Tim R, 1986. "Substitution Possibilities for Unpriced Natural Resources: Restricted Cost Functions for the Canadian Metal Mining Industry," The Review of Economics and Statistics, MIT Press, vol. 68(3), pages 398-405, August.
    11. Du, Minzhe & Liu, Yunxiao & Wang, Bing & Lee, Myunghun & Zhang, Ning, 2021. "The sources of regulated productivity in Chinese power plants: An estimation of the restricted cost function combined with DEA approach," Energy Economics, Elsevier, vol. 100(C).
    12. Du, Limin & Hanley, Aoife & Zhang, Ning, 2016. "Environmental technical efficiency, technology gap and shadow price of coal-fuelled power plants in China: A parametric meta-frontier analysis," Resource and Energy Economics, Elsevier, vol. 43(C), pages 14-32.
    13. Fuchs-Seliger, Susanne, 1995. "On Shephard's Lemma and the continuity of compensated demand functions," Economics Letters, Elsevier, vol. 48(1), pages 25-28, April.
    14. Yang, Mian & Hou, Yaru & Fang, Chao & Duan, Hongbo, 2020. "Constructing energy-consuming right trading system for China's manufacturing industry in 2025," Energy Policy, Elsevier, vol. 144(C).
    15. Ning Zhang & Fanbin Kong & Chih-Chun Kung, 2015. "On Modeling Environmental Production Characteristics: A Slacks-Based Measure for China’s Poyang Lake Ecological Economics Zone," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 389-404, October.
    16. Wenming Cao & Shuanglian Chen & Zimei Huang, 2020. "Does Foreign Direct Investment Impact Energy Intensity? Evidence from Developing Countries," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, March.
    17. Lee, Myunghun, 2002. "The effect of sulfur regulations on the U.S. electric power industry: a generalized cost approach," Energy Economics, Elsevier, vol. 24(5), pages 491-508, September.
    18. Rolf Färe & Shawna Grosskopf & Carl A. Pasurka & William L. Weber, 2012. "Substitutability among undesirable outputs," Applied Economics, Taylor & Francis Journals, vol. 44(1), pages 39-47, January.
    19. Gollop, Frank M & Roberts, Mark J, 1983. "Environmental Regulations and Productivity Growth: The Case of Fossil-Fueled Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 91(4), pages 654-674, August.
    20. Atkinson, Scott E & Halvorsen, Robert, 1984. "Parametric Efficiency Tests, Economies of Scale, and Input Demand in U.S. Electric Power Generation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(3), pages 647-662, October.
    21. Pan, Xiongfeng & Uddin, Md. Kamal & Han, Cuicui & Pan, Xianyou, 2019. "Dynamics of financial development, trade openness, technological innovation and energy intensity: Evidence from Bangladesh," Energy, Elsevier, vol. 171(C), pages 456-464.
    22. Michael E. Porter & Claas van der Linde, 1995. "Toward a New Conception of the Environment-Competitiveness Relationship," Journal of Economic Perspectives, American Economic Association, vol. 9(4), pages 97-118, Fall.
    23. Zhou, Xiaoyan & Zhang, Jie & Li, Junpeng, 2013. "Industrial structural transformation and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 57(C), pages 43-51.
    24. Luan, Bingjiang & Zou, Hong & Chen, Shuxing & Huang, Junbing, 2021. "The effect of industrial structure adjustment on China’s energy intensity: Evidence from linear and nonlinear analysis," Energy, Elsevier, vol. 218(C).
    25. Li, Ke & Lin, Boqiang, 2014. "The nonlinear impacts of industrial structure on China's energy intensity," Energy, Elsevier, vol. 69(C), pages 258-265.
    26. Wang, Qunwei & Su, Bin & Zhou, Peng & Chiu, Ching-Ren, 2016. "Measuring total-factor CO2 emission performance and technology gaps using a non-radial directional distance function: A modified approach," Energy Economics, Elsevier, vol. 56(C), pages 475-482.
    27. Kumbhakar, Subal C. & Wang, Hung-Jen, 2006. "Pitfalls in the estimation of a cost function that ignores allocative inefficiency: A Monte Carlo analysis," Journal of Econometrics, Elsevier, vol. 134(2), pages 317-340, October.
    28. Benton F. Massell, 1961. "A Disaggregated View of Technical Change," Journal of Political Economy, University of Chicago Press, vol. 69(6), pages 547-547.
    29. Khiabani, Nasser & Hasani, Karim, 2010. "Technical and allocative inefficiencies and factor elasticities of substitution: An analysis of energy waste in Iran's manufacturing," Energy Economics, Elsevier, vol. 32(5), pages 1182-1190, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yu & Zhong, Honglin & Kong, Fanbin & Zhang, Ning, 2023. "Can China achieve carbon neutrality without power shortage? A substitutability perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Du, Minzhe & Liu, Yunxiao & Wang, Bing & Lee, Myunghun & Zhang, Ning, 2021. "The sources of regulated productivity in Chinese power plants: An estimation of the restricted cost function combined with DEA approach," Energy Economics, Elsevier, vol. 100(C).
    3. Jin, Taeyoung, 2022. "Impact of heat and electricity consumption on energy intensity: A panel data analysis," Energy, Elsevier, vol. 239(PA).
    4. Zhang, Yanfang & Gao, Qi & Wei, Jinpeng & Shi, Xunpeng & Zhou, Dequn, 2023. "Can China's energy-consumption permit trading scheme achieve the “Porter” effect? Evidence from an estimated DSGE model," Energy Policy, Elsevier, vol. 180(C).
    5. Kumar, Surender & Managi, Shunsuke & Jain, Rakesh Kumar, 2020. "CO2 mitigation policy for Indian thermal power sector: Potential gains from emission trading," Energy Economics, Elsevier, vol. 86(C).
    6. Wang, Kaike & Su, Xuewei & Wang, Shuhong, 2023. "How does the energy-consuming rights trading policy affect China's carbon emission intensity?," Energy, Elsevier, vol. 276(C).
    7. Xie, Hualin & Yu, Yanni & Wang, Wei & Liu, Yanchu, 2017. "The substitutability of non-fossil energy, potential carbon emission reduction and energy shadow prices in China," Energy Policy, Elsevier, vol. 107(C), pages 63-71.
    8. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin & Jiang, Hongdian, 2022. "How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China," Energy Economics, Elsevier, vol. 105(C).
    9. Li, Ke & Lin, Boqiang, 2017. "Economic growth model, structural transformation, and green productivity in China," Applied Energy, Elsevier, vol. 187(C), pages 489-500.
    10. Lin, Boqiang & Zhou, Yicheng, 2021. "How does vertical fiscal imbalance affect the upgrading of industrial structure? Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    11. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    12. Andrés Maroto Sánchez & Juan Ramón Cuadrado Roura, 2008. "New Regional convergence in productivity and productive structure. Application to European Southern countries," Working Papers 11/08, Instituto Universitario de Análisis Económico y Social.
    13. He, Yiqing & Ding, Xin & Yang, Chuchu, 2021. "Do environmental regulations and financial constraints stimulate corporate technological innovation? Evidence from China," Journal of Asian Economics, Elsevier, vol. 72(C).
    14. Qi, Xiulin & Wu, Zhifang & Xu, Jinqing & Shan, Biaoan, 2023. "Environmental justice and green innovation: A quasi-natural experiment based on the establishment of environmental courts in China," Ecological Economics, Elsevier, vol. 205(C).
    15. Zhou, Xiaoxiao & Pan, Zixuan & Shahbaz, Muhammad & Song, Malin, 2020. "Directed technological progress driven by diversified industrial structural change," Structural Change and Economic Dynamics, Elsevier, vol. 54(C), pages 112-129.
    16. Chuanxin Xia & Yu Zhao & Qingxia Zhao & Shuo Wang & Ning Zhang, 2022. "Exact Eco-Efficiency Measurement in the Yellow River Basin: A New Non-Parametric Approach," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    17. Lu, Yunguo & Zhang, Lin, 2022. "National mitigation policy and the competitiveness of Chinese firms," Energy Economics, Elsevier, vol. 109(C).
    18. Li, Ke & Lin, Boqiang, 2018. "How to promote energy efficiency through technological progress in China?," Energy, Elsevier, vol. 143(C), pages 812-821.
    19. Ramanathan, Ramakrishnan & Ramanathan, Usha & Bentley, Yongmei, 2018. "The debate on flexibility of environmental regulations, innovation capabilities and financial performance – A novel use of DEA," Omega, Elsevier, vol. 75(C), pages 131-138.
    20. Prokop, Viktor & Gerstlberger, Wolfgang & Zapletal, David & Gyamfi, Solomon, 2023. "Do we need human capital heterogeneity for energy efficiency and innovativeness? Insights from European catching-up territories," Energy Policy, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:172:y:2023:i:c:s0301421522005262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.