IDEAS home Printed from https://ideas.repec.org/p/cde/cdewps/302.html
   My bibliography  Save this paper

CO2 Mitigation Policy for Indian Thermal Power Sector-Potential Gains from Emission Trading

Author

Listed:
  • Surender Kumar

    (Department of Economics, Delhi School of Economics)

  • Shunsuke Managi

    (Urban Institute & Departments of Urban and Environmental Engineering,Kyushu University, 744 Motooka, Nishi-ku,Fukuoka)

  • Rakesh Kumar Jain

    (Department of Business Economics South Campus, University of Delhi & Indian Railways, New Delhi India)

Abstract

This study shows potential cost savings by adoption of emission trading in India. At the Paris Agreement, India pledged to reduce CO2 emissions intensity by about 30-35 percent by 2030 relative to 2005. Applying joint production function of electricity and CO2 emissions, we find that India could have saved about US$ 5 to 8 billion, if she had constituted an emission trading system, with the provision of banking and borrowing over the study period of 5 years. To our knowledge, this is the first study measuring foregone gains due to absence of a nationwide carbon emission-trading program in coal fired thermal power sector, using an ex-post analysis.

Suggested Citation

  • Surender Kumar & Shunsuke Managi & Rakesh Kumar Jain, 2019. "CO2 Mitigation Policy for Indian Thermal Power Sector-Potential Gains from Emission Trading," Working papers 302, Centre for Development Economics, Delhi School of Economics.
  • Handle: RePEc:cde:cdewps:302
    as

    Download full text from publisher

    File URL: http://www.cdedse.org/wp-content/uploads/2019/12/Work302.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robert N. Stavins, 2020. "The Future of US Carbon-Pricing Policy," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 1(1), pages 8-64.
    2. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," Omega, Elsevier, vol. 63(C), pages 48-59.
    3. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2014. "Potential gains from trading bad outputs: The case of U.S. electric power plants," Resource and Energy Economics, Elsevier, vol. 36(1), pages 99-112.
    4. Rakesh Kumar Jain & Surender Kumar, 2018. "Shadow price of CO2 emissions in Indian thermal power sector," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 879-902, October.
    5. Newell, Richard G & Stavins, Robert N, 2003. "Cost Heterogeneity and the Potential Savings from Market-Based Policies," Journal of Regulatory Economics, Springer, vol. 23(1), pages 43-59, January.
    6. Rolf Färe & Shawna Grosskopf & Carl A. Pasurka & William L. Weber, 2012. "Substitutability among undesirable outputs," Applied Economics, Taylor & Francis Journals, vol. 44(1), pages 39-47, January.
    7. Stowe, Robert C & Stavins, Robert Norman & Chan, Gabriel Angelo & Sweeney, Richard Leonard, 2012. "The SO2 Allowance Trading System and the Clean Air Act Amendments of 1990: Reflections on Twenty Years of Policy Innovation," Scholarly Articles 8160721, Harvard Kennedy School of Government.
    8. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    9. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    10. Bellas, Allen S. & Lange, Ian, 2011. "Evidence of Innovation and Diffusion Under Tradable Permit Programs," International Review of Environmental and Resource Economics, now publishers, vol. 5(1), pages 1-22, May.
    11. Richard Schmalensee & Robert N. Stavins, 2013. "The SO 2 Allowance Trading System: The Ironic History of a Grand Policy Experiment," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 103-122, Winter.
    12. Gupta, Manish, 2006. "Costs of Reducing Greenhouse Gas Emissions: A Case Study of India's Power Generation Sector," Climate Change Modelling and Policy Working Papers 12038, Fondazione Eni Enrico Mattei (FEEM).
    13. Manish Gupta, 2006. "Costs of Reducing Greenhouse Gas Emissions: A Case Study of India’s Power Generation Sector," Working Papers 2006.147, Fondazione Eni Enrico Mattei.
    14. Kumar, Surender & Managi, Shunsuke, 2010. "Sulfur dioxide allowances: Trading and technological progress," Ecological Economics, Elsevier, vol. 69(3), pages 623-631, January.
    15. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl, 2016. "Technical change and pollution abatement costs," European Journal of Operational Research, Elsevier, vol. 248(2), pages 715-724.
    16. Chan, Gabriel & Stavins, Robert & Stowe, Robert & Sweeney, Richard, 2012. "The so2 Allowance-Trading System and the Clean Air Act Amendments of 1990: Reflections on 20 Years of Policy Innovation," National Tax Journal, National Tax Association;National Tax Journal, vol. 65(2), pages 419-452, June.
    17. Kumar, Surender & Managi, Shunsuke, 2011. "Non-separability and substitutability among water pollutants: evidence from India," Environment and Development Economics, Cambridge University Press, vol. 16(6), pages 709-733, December.
    18. Sim, Seung-Gyu & Lin, Hsuan-Chih, 2018. "Competitive dominance of emission trading over Pigouvian taxation in a globalized economy," Economics Letters, Elsevier, vol. 163(C), pages 158-161.
    19. Färe, Rolf & Grosskopf, Shawna & Pasurka,, Carl A., 2013. "Tradable permits and unrealized gains from trade," Energy Economics, Elsevier, vol. 40(C), pages 416-424.
    20. Lawrence H. Goulder & Andrew Schein, 2013. "Carbon Taxes vs. Cap and Trade: A Critical Review," NBER Working Papers 19338, National Bureau of Economic Research, Inc.
    21. Atkinson, Scott & Tietenberg, Tom, 1991. "Market failure in incentive-based regulation: The case of emissions trading," Journal of Environmental Economics and Management, Elsevier, vol. 21(1), pages 17-31, July.
    22. Richard Schmalensee & Robert N Stavins, 2017. "The design of environmental markets: What have we learned from experience with cap and trade?," Oxford Review of Economic Policy, Oxford University Press, vol. 33(4), pages 572-588.
    23. Xian, Yujiao & Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2019. "Would China’s power industry benefit from nationwide carbon emission permit trading? An optimization model-based ex post analysis on abatement cost savings," Applied Energy, Elsevier, vol. 235(C), pages 978-986.
    24. David Popp, 2003. "Pollution control innovations and the Clean Air Act of 1990," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 22(4), pages 641-660.
    25. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cde:cdewps:302. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sanjeev Sharma). General contact details of provider: http://edirc.repec.org/data/cdudein.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.