An interpretable deep learning framework for photofermentation biological hydrogen production and process optimization
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.135704
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Li, Wei & Li, Yongsheng & Garg, Akhil & Gao, Liang, 2024. "Enhancing real-time degradation prediction of lithium-ion battery: A digital twin framework with CNN-LSTM-attention model," Energy, Elsevier, vol. 286(C).
- Fu, Qizi & Wang, Dongbo & Li, Xiaoming & Yang, Qi & Xu, Qiuxiang & Ni, Bing-Jie & Wang, Qilin & Liu, Xuran, 2021. "Towards hydrogen production from waste activated sludge: Principles, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Gu, Pingwei & Zhang, Ying & Duan, Bin & Zhang, Chenghui & Kang, Yongzhe, 2024. "Rapid and flexible lithium-ion battery performance evaluation using random charging curve based on deep learning," Energy, Elsevier, vol. 293(C).
- González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Luo, Run & Li, Yadong & Guo, Huiyu & Wang, Qi & Wang, Xiaolie, 2024. "Cross-operating-condition fault diagnosis of a small module reactor based on CNN-LSTM transfer learning with limited data," Energy, Elsevier, vol. 313(C).
- Wang, Ke & Ma, Changxi & Qiao, Yihuan & Lu, Xijin & Hao, Weining & Dong, Sheng, 2021. "A hybrid deep learning model with 1DCNN-LSTM-Attention networks for short-term traffic flow prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
- Sagir, Emrah & Alipour, Siamak, 2021. "Photofermentative hydrogen production by immobilized photosynthetic bacteria: Current perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Wan, Anping & Chang, Qing & AL-Bukhaiti, Khalil & He, Jiabo, 2023. "Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism," Energy, Elsevier, vol. 282(C).
- Zhang, Weiyi & Zhou, Haiyang & Bao, Xiaohua & Cui, Hongzhi, 2023. "Outlet water temperature prediction of energy pile based on spatial-temporal feature extraction through CNN–LSTM hybrid model," Energy, Elsevier, vol. 264(C).
- Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2023. "Optimizing utilization pathways for biomass to chemicals and energy by integrating emergy analysis and particle swarm optimization (PSO)," Renewable Energy, Elsevier, vol. 202(C), pages 1448-1459.
- Jamal Mamkhezri & Mohsen Khezri, 2024. "Assessing the spillover effects of research and development and renewable energy on CO2 emissions: international evidence," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(3), pages 7657-7686, March.
- Hosseinzadeh, Ahmad & Zhou, John L. & Li, Xiaowei & Afsari, Morteza & Altaee, Ali, 2022. "Techno-economic and environmental impact assessment of hydrogen production processes using bio-waste as renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
- Liu, Xinxin & Zhao, Junhui & He, Chao & Liu, Liang & Li, Gang & Pan, Xiaohui & Xu, Guizhuan & Lu, Chaoyang & Zhang, Quanguo & Jiao, Youzhou, 2023. "A new approach for evaluating photosynthetic bio-hydrogen production: The dissipation rate method," Energy, Elsevier, vol. 284(C).
- Song, Jiancai & Zhu, Shuo & Li, Wen & Xue, Guixiang & Gao, Xiaoyu, 2025. "A novel robust heating load prediction algorithm based on hybrid residual network and temporal fusion transformer model," Energy, Elsevier, vol. 318(C).
- Wang, Jun & Cao, Junxing, 2024. "Reservoir properties inversion using attention-based parallel hybrid network integrating feature selection and transfer learning," Energy, Elsevier, vol. 304(C).
- Amro Hassanein & Freddy Witarsa & Stephanie Lansing & Ling Qiu & Yong Liang, 2020. "Bio-Electrochemical Enhancement of Hydrogen and Methane Production in a Combined Anaerobic Digester (AD) and Microbial Electrolysis Cell (MEC) from Dairy Manure," Sustainability, MDPI, vol. 12(20), pages 1-12, October.
- Yu, Ruyang & Zhang, Kai & Li, Tao & Jiang, Shu, 2025. "Interpretable predictive modelling of outlet temperatures in Central Alberta's hydrothermal system using boosting-based ensemble learning incorporating Shapley Additive exPlanations approach," Energy, Elsevier, vol. 318(C).
- Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).
- Beibei Guo & Tingting Cheng & Tingting Sun & Yi Tong & Sifeng Nian, 2024. "Identifying the Complexity of the Food-Energy-Water Nexus Based on Emergy Analysis in Crop Production Systems of China," Land, MDPI, vol. 13(11), pages 1-25, October.
- Zhao, Xiaoyu & Duan, Pengfei & Cao, Xiaodong & Xue, Qingwen & Zhao, Bingxu & Hu, Jinxue & Zhang, Chenyang & Yuan, Xiaoyang, 2025. "A probabilistic load forecasting method for multi-energy loads based on inflection point optimization and integrated feature screening," Energy, Elsevier, vol. 327(C).
- Gomez, William & Wang, Fu-Kwun & Lo, Shih-Che, 2024. "A hybrid approach based machine learning models in electricity markets," Energy, Elsevier, vol. 289(C).
- Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
- Gong, Bin & An, Aimin & Shi, Yaoke & Guan, Haijiao & Jia, Wenchao & Yang, Fazhi, 2024. "An interpretable hybrid spatiotemporal fusion method for ultra-short-term photovoltaic power prediction," Energy, Elsevier, vol. 308(C).
- Fengtian Chang & Guanghui Zhou & Kai Ding & Jintao Li & Yanzhen Jing & Jizhuang Hui & Chao Zhang, 2023. "A CNN-LSTM and Attention-Mechanism-Based Resistance Spot Welding Quality Online Detection Method for Automotive Bodies," Mathematics, MDPI, vol. 11(22), pages 1-19, November.
- Hu, Yue & Liu, Hanjing & Wu, Senzhen & Zhao, Yuan & Wang, Zhijin & Liu, Xiufeng, 2024. "Temporal collaborative attention for wind power forecasting," Applied Energy, Elsevier, vol. 357(C).
- Furlong, Aidan & Alsafadi, Farah & Palmtag, Scott & Godfrey, Andrew & Wu, Xu, 2025. "Data-driven prediction and uncertainty quantification of PWR crud-induced power shift using convolutional neural networks," Energy, Elsevier, vol. 316(C).
- Liu, Yanli & Wang, Junyi & Liu, Liqi, 2024. "Physics-informed reinforcement learning for probabilistic wind power forecasting under extreme events," Applied Energy, Elsevier, vol. 376(PA).
- Wang, Danhao & Peng, Daogang & Huang, Dongmei & Zhao, Huirong & Qu, Bogang, 2025. "MMEMformer: A multi-scale memory-enhanced transformer framework for short-term load forecasting in integrated energy systems," Energy, Elsevier, vol. 322(C).
- Hu, Rong & Zhou, Kaile & Lu, Xinhui, 2025. "Integrated loads forecasting with absence of crucial factors," Energy, Elsevier, vol. 322(C).
- Minan Tang & Changyou Wang & Jiandong Qiu & Hanting Li & Xi Guo & Wenxin Sheng, 2024. "Short-Term Load Forecasting of Electric Vehicle Charging Stations Accounting for Multifactor IDBO Hybrid Models," Energies, MDPI, vol. 17(12), pages 1-19, June.
- Sun, Zhongbo & Zhao, Yixin & Bolz, Pascal & Côte, Claire & Ren, Jiandong, 2025. "A multimethod GIS-based framework for site selection of underground pumped storage power stations using closing coal mines: A case study of the Shanxi province, China," Renewable Energy, Elsevier, vol. 243(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225013465. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.