IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225004219.html
   My bibliography  Save this article

A novel robust heating load prediction algorithm based on hybrid residual network and temporal fusion transformer model

Author

Listed:
  • Song, Jiancai
  • Zhu, Shuo
  • Li, Wen
  • Xue, Guixiang
  • Gao, Xiaoyu

Abstract

The district heating system involves a wide range and large scale, and the change of heat load exhibits significant non-linear, multi-coupling characteristics due to the influence of meteorological, building thermal inertia of numerous system factors. Additionally, the problem of missing values in the actual heating system also causes the existing heat load prediction models to frequently have difficulties in extracting the complex trends of the historical heat load data and result in the lack of prediction accuracy, which is detrimental to the supply-demand balance and leads to severe environmental problems such as energy wastage. A hybrid heat load prediction model based on Residual Network and Temporal Fusion Transformer algorithms was proposed in this paper to address the complexity of heat load changes in district heating system. The excellent capability of Residual Network in mining historical information contributes to the effective imputation of missing values and the establishment of a sound data foundation for the subsequent construction of data-driven heat load prediction models. The Gated Residual Network, multi-head attention mechanism, and other functional units in the Temporal fusion transformer model were sufficient to adequately extract the features and patterns of the historical heat load data and achieve reliable heat load prediction. Detailed comparative experiments with the actual data from four heat exchange stations at the district heating system in Anyang were conducted in this paper to validate the performance of the proposed hybrid heat load prediction model based on Residual Network and temporal fusion transformer. The mean absolute percentage error of the heat load prediction results in the four sites were all below 0.05 in the comparison experiments. The error metrics of Mean absolute error, Mean square error, and Root mean square error were also lower than other state-of-the-art algorithms. The feasibility and effectiveness of this model in practical applications are verified through experiments, which provide a new research perspective and practical reference for the heat load prediction of district heating system.

Suggested Citation

  • Song, Jiancai & Zhu, Shuo & Li, Wen & Xue, Guixiang & Gao, Xiaoyu, 2025. "A novel robust heating load prediction algorithm based on hybrid residual network and temporal fusion transformer model," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004219
    DOI: 10.1016/j.energy.2025.134779
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225004219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134779?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Mianshan, 2022. "District heating load prediction algorithm based on bidirectional long short-term memory network model," Energy, Elsevier, vol. 254(PA).
    2. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    3. Hong-Wei Xu & Wei Qin & Yan-Ning Sun & You-Long Lv & Jie Zhang, 2024. "Attention mechanism-based deep learning for heat load prediction in blast furnace ironmaking process," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 1207-1220, March.
    4. Bergsteinsson, Hjörleifur G. & Sørensen, Mikkel Lindstrøm & Møller, Jan Kloppenborg & Madsen, Henrik, 2023. "Heat load forecasting using adaptive spatial hierarchies," Applied Energy, Elsevier, vol. 350(C).
    5. Sun, Chunhua & Yan, Hao & Cao, Shanshan & Xia, Guoqiang & Liu, Yanan & Wu, Xiangdong, 2024. "A control strategy considering buildings’ thermal characteristics to mitigate heat supply-demand mismatches in district heating systems," Energy, Elsevier, vol. 307(C).
    6. Lu, Chujie & Li, Sihui & Reddy Penaka, Santhan & Olofsson, Thomas, 2023. "Automated machine learning-based framework of heating and cooling load prediction for quick residential building design," Energy, Elsevier, vol. 274(C).
    7. Xu, Yuanjin & Li, Fei & Asgari, Armin, 2022. "Prediction and optimization of heating and cooling loads in a residential building based on multi-layer perceptron neural network and different optimization algorithms," Energy, Elsevier, vol. 240(C).
    8. Deb, Chirag & Dai, Zhonghao & Schlueter, Arno, 2021. "A machine learning-based framework for cost-optimal building retrofit," Applied Energy, Elsevier, vol. 294(C).
    9. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    10. Wan, Anping & Chang, Qing & AL-Bukhaiti, Khalil & He, Jiabo, 2023. "Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism," Energy, Elsevier, vol. 282(C).
    11. Zhang, Weiyi & Zhou, Haiyang & Bao, Xiaohua & Cui, Hongzhi, 2023. "Outlet water temperature prediction of energy pile based on spatial-temporal feature extraction through CNN–LSTM hybrid model," Energy, Elsevier, vol. 264(C).
    12. Zhang, Qiang & Tian, Zhe & Ma, Zhijun & Li, Genyan & Lu, Yakai & Niu, Jide, 2020. "Development of the heating load prediction model for the residential building of district heating based on model calibration," Energy, Elsevier, vol. 205(C).
    13. Dasi, He & Ying, Zhang & Ashab, MD Faisal Bin, 2024. "Proposing hybrid prediction approaches with the integration of machine learning models and metaheuristic algorithms to forecast the cooling and heating load of buildings," Energy, Elsevier, vol. 291(C).
    14. Hwang, Jun Kwon & Yun, Geun Young & Lee, Sukho & Seo, Hyeongjoon & Santamouris, Mat, 2020. "Using deep learning approaches with variable selection process to predict the energy performance of a heating and cooling system," Renewable Energy, Elsevier, vol. 149(C), pages 1227-1245.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohan, Ritwik & Pachauri, Nikhil, 2025. "An ensemble model for the energy consumption prediction of residential buildings," Energy, Elsevier, vol. 314(C).
    2. Yan, Xiuying & Ji, Xingxing & Meng, Qinglong & Sun, Hang & Lei, Yu, 2024. "A hybrid prediction model of improved bidirectional long short-term memory network for cooling load based on PCANet and attention mechanism," Energy, Elsevier, vol. 292(C).
    3. Cui, Xuyang & Zhu, Junda & Jia, Lifu & Wang, Jiahui & Wu, Yusen, 2024. "A novel heat load prediction model of district heating system based on hybrid whale optimization algorithm (WOA) and CNN-LSTM with attention mechanism," Energy, Elsevier, vol. 312(C).
    4. Zhang, Huan & Liu, Tao & Liu, Wang & Zhou, Jianzhao & Zhang, Quanguo & Ren, Jingzheng, 2025. "An interpretable deep learning framework for photofermentation biological hydrogen production and process optimization," Energy, Elsevier, vol. 322(C).
    5. Lin, Xiaojie & Zhang, Ning & Du-Ikonen, Liuliu & Yuan, Xiaolei & Zhong, Wei, 2025. "Investigation of building load prediction models based on integration of mechanism methods and data-driven models," Energy, Elsevier, vol. 324(C).
    6. Wang, Zhijin & Liu, Xiufeng & Huang, Yaohui & Zhang, Peisong & Fu, Yonggang, 2023. "A multivariate time series graph neural network for district heat load forecasting," Energy, Elsevier, vol. 278(PA).
    7. Peng, Daogang & Liu, Yu & Wang, Danhao & Zhao, Huirong & Qu, Bogang, 2024. "Multi-energy load forecasting for integrated energy system based on sequence decomposition fusion and factors correlation analysis," Energy, Elsevier, vol. 308(C).
    8. He, Yan & Zhang, Hongli & Dong, Yingchao & Wang, Cong & Ma, Ping, 2024. "Residential net load interval prediction based on stacking ensemble learning," Energy, Elsevier, vol. 296(C).
    9. Chen, Wenhao & Rong, Fei & Lin, Chuan, 2025. "A multi-energy loads forecasting model based on dual attention mechanism and multi-scale hierarchical residual network with gated recurrent unit," Energy, Elsevier, vol. 320(C).
    10. Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "District heating load patterns and short-term forecasting for buildings and city level," Energy, Elsevier, vol. 289(C).
    11. Farid Moazzen & M. J. Hossain, 2024. "Multivariate Deep Learning Long Short-Term Memory-Based Forecasting for Microgrid Energy Management Systems," Energies, MDPI, vol. 17(17), pages 1-16, August.
    12. Chen, Kang & Zhu, Xu & Anduv, Burkay & Jin, Xinqiao & Du, Zhimin, 2022. "Digital twins model and its updating method for heating, ventilation and air conditioning system using broad learning system algorithm," Energy, Elsevier, vol. 251(C).
    13. Zhang, Chaobo & Zhang, Jian & Zhao, Yang & Lu, Jie, 2025. "Automated data-driven building energy load prediction method based on generative pre-trained transformers (GPT)," Energy, Elsevier, vol. 318(C).
    14. Yu, Ruyang & Zhang, Kai & Li, Tao & Jiang, Shu, 2025. "Interpretable predictive modelling of outlet temperatures in Central Alberta's hydrothermal system using boosting-based ensemble learning incorporating Shapley Additive exPlanations approach," Energy, Elsevier, vol. 318(C).
    15. Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).
    16. Zhao, Xiaoyu & Duan, Pengfei & Cao, Xiaodong & Xue, Qingwen & Zhao, Bingxu & Hu, Jinxue & Zhang, Chenyang & Yuan, Xiaoyang, 2025. "A probabilistic load forecasting method for multi-energy loads based on inflection point optimization and integrated feature screening," Energy, Elsevier, vol. 327(C).
    17. Guo, Rui & Shamsi, Mohammad Haris & Sharifi, Mohsen & Saelens, Dirk, 2025. "Exploring uncertainty in district heat demand through a probabilistic building characterization approach," Applied Energy, Elsevier, vol. 377(PA).
    18. Liu, Yang & Ren, Qingqing, 2025. "Online incremental learning approach of heat pump and chiller models based on the dynamic random forests in queue structure," Energy, Elsevier, vol. 323(C).
    19. Siqiong Dai & Liang Yuan & Jiayi Zhong & Xubin Liu & Zhangjie Liu, 2025. "Forecasting Residential EV Charging Pile Capacity in Urban Power Systems: A Cointegration–BiLSTM Hybrid Approach," Sustainability, MDPI, vol. 17(14), pages 1-18, July.
    20. Gomez, William & Wang, Fu-Kwun & Lo, Shih-Che, 2024. "A hybrid approach based machine learning models in electricity markets," Energy, Elsevier, vol. 289(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.