IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224001592.html
   My bibliography  Save this article

A hybrid prediction model of improved bidirectional long short-term memory network for cooling load based on PCANet and attention mechanism

Author

Listed:
  • Yan, Xiuying
  • Ji, Xingxing
  • Meng, Qinglong
  • Sun, Hang
  • Lei, Yu

Abstract

Accurate and reliable cooling load forecasting is a prerequisite for air-conditioning system control and the basis for building-side energy management. Therefore, a hybrid prediction model of an improved bidirectional long short-term memory (BiLSTM) network based on principal component analysis network (PCANet) and attention mechanism (CNN-IBiLSTM-Attention) is proposed to predict the cooling load of large commercial buildings. First of all, the PCANet algorithm is used to analyze the sensitivity of the influencing factors. Then, the hybrid strategy improved whale optimization algorithm (HSIWOA) is used to optimize the hyperparameter of BiLSTM. At last, the performance of the proposed algorithm is verified by using the actual data of two commercial buildings in Xi'an. The results show that using the PCANet algorithm for sensitivity analysis avoids feature redundancy. HSIWOA is suitable for hyperparameter optimization of BiLSTM. Compared with the other three prediction models, CNN-IBiLSTM-Attention reduced the mean absolute percentage error (MAPE) of Building 1 and 2 test sets by 31.55 %, 55.59 %, and 60.58 % and 56.49 %, 60.3 %, and 67.37 %, respectively. The proposed prediction model has superior hyperparameter optimization ability, better model complexity, and stronger generalization ability. Therefore, the proposed prediction model becomes a reliable tool for predicting the cooling load of large commercial buildings.

Suggested Citation

  • Yan, Xiuying & Ji, Xingxing & Meng, Qinglong & Sun, Hang & Lei, Yu, 2024. "A hybrid prediction model of improved bidirectional long short-term memory network for cooling load based on PCANet and attention mechanism," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224001592
    DOI: 10.1016/j.energy.2024.130388
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224001592
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224001592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.