IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v323y2025ics0360544225014823.html
   My bibliography  Save this article

Online incremental learning approach of heat pump and chiller models based on the dynamic random forests in queue structure

Author

Listed:
  • Liu, Yang
  • Ren, Qingqing

Abstract

Machine learning has been widely utilized in modeling heat pumps and chillers to predict key parameters such as the coefficient of performance (COP) and develop physics-data hybrid-driven models. However, during the online engineering applications, factors such as equipment aging, faults, upgrades and expanded operating conditions can cause dataset shifts and dynamic changes in thermodynamic performance, leading to model failures. To address these challenges, this study introduces an online incremental learning approach based on a novel algorithm, the dynamic random forests in queue structure (DRFQS). This algorithm incorporates a universally applicable dataset shift detection method and clear stability-plasticity balance control. By integrating COP DRFQS predictors with mechanism models, heat pump and chiller models with self-evolution capabilities were developed. Simulation results including over 100 COP drop fault scenarios demonstrate that the self-evolution models outperform non-evolvable models trained via offline batch learning. The self-evolution models autonomously adapt to new time-varying and condition-dependent patterns in thermodynamic performance without interruptions, effectively overcoming dataset shift issues during long-term use. The models significantly enhance prediction accuracy for COP, thermodynamic perfection, and other parameters with prediction errors decreased by 37.1 %∼84.6 %. The study addressed the limitations of offline batch learning, offering an advanced AI-enhanced approach for HVAC system modeling.

Suggested Citation

  • Liu, Yang & Ren, Qingqing, 2025. "Online incremental learning approach of heat pump and chiller models based on the dynamic random forests in queue structure," Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014823
    DOI: 10.1016/j.energy.2025.135840
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225014823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. DeQuante Rashon Mckoy & Raymond Charles Tesiero & Yaa Takyiwaa Acquaah & Balakrishna Gokaraju, 2023. "Review of HVAC Systems History and Future Applications," Energies, MDPI, vol. 16(17), pages 1-15, August.
    2. Camdali, Unal & Bulut, Murat & Sozbir, Nedim, 2015. "Numerical modeling of a ground source heat pump: The Bolu case," Renewable Energy, Elsevier, vol. 83(C), pages 352-361.
    3. Tomasz Halon & Ewa Pelinska-Olko & Malgorzata Szyc & Bartosz Zajaczkowski, 2019. "Predicting Performance of a District Heat Powered Adsorption Chiller by Means of an Artificial Neural Network," Energies, MDPI, vol. 12(17), pages 1-11, August.
    4. Vallee, Mathieu & Wissocq, Thibaut & Gaoua, Yacine & Lamaison, Nicolas, 2023. "Generation and evaluation of a synthetic dataset to improve fault detection in district heating and cooling systems," Energy, Elsevier, vol. 283(C).
    5. Thangavelu, Sundar Raj & Myat, Aung & Khambadkone, Ashwin, 2017. "Energy optimization methodology of multi-chiller plant in commercial buildings," Energy, Elsevier, vol. 123(C), pages 64-76.
    6. Monfet, Danielle & Zmeureanu, Radu, 2012. "Ongoing commissioning of water-cooled electric chillers using benchmarking models," Applied Energy, Elsevier, vol. 92(C), pages 99-108.
    7. Wojciech Kalawa & Karol Sztekler & Agata Mlonka-Mędrala & Ewelina Radomska & Wojciech Nowak & Łukasz Mika & Tomasz Bujok & Piotr Boruta, 2023. "Simulation Analysis of Mechanical Fluidized Bed in Adsorption Chillers," Energies, MDPI, vol. 16(15), pages 1-22, August.
    8. Li, Wenqiang & Gong, Guangcai & Fan, Houhua & Peng, Pei & Chun, Liang, 2020. "Meta-learning strategy based on user preferences and a machine recommendation system for real-time cooling load and COP forecasting," Applied Energy, Elsevier, vol. 270(C).
    9. Kim, Wonuk & Jeon, Yongseok & Kim, Yongchan, 2016. "Simulation-based optimization of an integrated daylighting and HVAC system using the design of experiments method," Applied Energy, Elsevier, vol. 162(C), pages 666-674.
    10. Karol Sztekler & Tomasz Siwek & Wojciech Kalawa & Lukasz Lis & Lukasz Mika & Ewelina Radomska & Wojciech Nowak, 2021. "CFD Analysis of Elements of an Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(22), pages 1-19, November.
    11. Chen, Zhang & Shen, Wenjing & Chen, Liqun & Wang, Shuqiang, 2022. "Adaptive online capacity prediction based on transfer learning for fast charging lithium-ion batteries," Energy, Elsevier, vol. 248(C).
    12. Antonella Priarone & Federico Silenzi & Marco Fossa, 2020. "Modelling Heat Pumps with Variable EER and COP in EnergyPlus: A Case Study Applied to Ground Source and Heat Recovery Heat Pump Systems," Energies, MDPI, vol. 13(4), pages 1-22, February.
    13. Hwang, Jun Kwon & Yun, Geun Young & Lee, Sukho & Seo, Hyeongjoon & Santamouris, Mat, 2020. "Using deep learning approaches with variable selection process to predict the energy performance of a heating and cooling system," Renewable Energy, Elsevier, vol. 149(C), pages 1227-1245.
    14. Kong, Dezhou & Hong, Yu & Yang, Yimin & Gu, Tingyue & Fu, Yude & Ye, Yihang & Xi, Weihao & Zhang, Zhiang, 2025. "A parametric, control-integrated and machine learning-enhanced modeling method of demand-side HVAC systems in industrial buildings: A practical validation study," Applied Energy, Elsevier, vol. 379(C).
    15. Lee, Tzong-Shing & Lu, Wan-Chen, 2010. "An evaluation of empirically-based models for predicting energy performance of vapor-compression water chillers," Applied Energy, Elsevier, vol. 87(11), pages 3486-3493, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xuefeng & Huang, Bin & Zheng, Yulan, 2023. "Control strategy for dynamic operation of multiple chillers under random load constraints," Energy, Elsevier, vol. 270(C).
    2. Chiam, Zhonglin & Papas, Ilias & Easwaran, Arvind & Alonso, Corinne & Estibals, Bruno, 2022. "Holistic optimization of the operation of a GCHP system: A case study on the ADREAM building in Toulouse, France," Applied Energy, Elsevier, vol. 321(C).
    3. Xue, Qi & Jin, Xinqiao & Jia, Zhiyang & Lyu, Yuan & Du, Zhimin, 2024. "Optimal control strategy of multiple chiller system based on background knowledge graph," Applied Energy, Elsevier, vol. 375(C).
    4. Chiam, Zhonglin & Easwaran, Arvind & Mouquet, David & Fazlollahi, Samira & Millás, Jaume V., 2019. "A hierarchical framework for holistic optimization of the operations of district cooling systems," Applied Energy, Elsevier, vol. 239(C), pages 23-40.
    5. Blanca Foliaco & Antonio Bula & Peter Coombes, 2020. "Improving the Gordon-Ng Model and Analyzing Thermodynamic Parameters to Evaluate Performance in a Water-Cooled Centrifugal Chiller," Energies, MDPI, vol. 13(9), pages 1-20, April.
    6. Tipole, Pralhad & Karthikeyan, A. & Bhojwani, Virendra & Patil, Abhay & Oak, Ninad & Ponatil, Amal & Nagori, Palash, 2016. "Applying a magnetic field on liquid line of vapour compression system is a novel technique to increase a performance of the system," Applied Energy, Elsevier, vol. 182(C), pages 376-382.
    7. Liming Deng & Wenjing Shen & Kangkang Xu & Xuhui Zhang, 2024. "An Adaptive Modeling Method for the Prognostics of Lithium-Ion Batteries on Capacity Degradation and Regeneration," Energies, MDPI, vol. 17(7), pages 1-15, April.
    8. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    9. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Experimental Validation of Water Flow Glazing: Transient Response in Real Test Rooms," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    10. Xiaoqing Wei & Nianping Li & Jinqing Peng & Jianlin Cheng & Jinhua Hu & Meng Wang, 2017. "Modeling and Optimization of a CoolingTower-Assisted Heat Pump System," Energies, MDPI, vol. 10(5), pages 1-18, May.
    11. Liang, Xinbin & Zhu, Xu & Chen, Siliang & Jin, Xinqiao & Xiao, Fu & Du, Zhimin, 2023. "Physics-constrained cooperative learning-based reference models for smart management of chillers considering extrapolation scenarios," Applied Energy, Elsevier, vol. 349(C).
    12. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    13. Jaroslaw Krzywanski, 2019. "A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods," Energies, MDPI, vol. 12(23), pages 1-32, November.
    14. Thangavelu, Sundar Raj & Myat, Aung & Khambadkone, Ashwin, 2017. "Energy optimization methodology of multi-chiller plant in commercial buildings," Energy, Elsevier, vol. 123(C), pages 64-76.
    15. Iivo Metsä-Eerola & Jukka Pulkkinen & Olli Niemitalo & Olli Koskela, 2022. "On Hourly Forecasting Heating Energy Consumption of HVAC with Recurrent Neural Networks," Energies, MDPI, vol. 15(14), pages 1-20, July.
    16. Byung-Ki Jeon & Eui-Jong Kim, 2021. "LSTM-Based Model Predictive Control for Optimal Temperature Set-Point Planning," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    17. Piotr Kowalski & Paweł Szałański & Wojciech Cepiński, 2021. "Waste Heat Recovery by Air-to-Water Heat Pump from Exhausted Ventilating Air for Heating of Multi-Family Residential Buildings," Energies, MDPI, vol. 14(23), pages 1-17, November.
    18. Ouazzani Chahidi, Laila & Fossa, Marco & Priarone, Antonella & Mechaqrane, Abdellah, 2021. "Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate – A case study," Applied Energy, Elsevier, vol. 282(PA).
    19. Tang, Rui & Wang, Shengwei & Shan, Kui & Cheung, Howard, 2018. "Optimal control strategy of central air-conditioning systems of buildings at morning start period for enhanced energy efficiency and peak demand limiting," Energy, Elsevier, vol. 151(C), pages 771-781.
    20. Antonio Del Corte-Valiente & José Luis Castillo-Sequera & Ana Castillo-Martinez & José Manuel Gómez-Pulido & Jose-Maria Gutierrez-Martinez, 2017. "An Artificial Neural Network for Analyzing Overall Uniformity in Outdoor Lighting Systems," Energies, MDPI, vol. 10(2), pages 1-18, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.