IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223017814.html
   My bibliography  Save this article

Generation and evaluation of a synthetic dataset to improve fault detection in district heating and cooling systems

Author

Listed:
  • Vallee, Mathieu
  • Wissocq, Thibaut
  • Gaoua, Yacine
  • Lamaison, Nicolas

Abstract

This paper investigates various types of faults in District Heating & Cooling (DHC) systems. Many authors point out that the lack of data hinders the development of good data-driven models for fault detection and diagnosis (FDD). In this work, we design a reference dataset based on simulation and use it to evaluate Machine Learning (ML) models for fault detection.

Suggested Citation

  • Vallee, Mathieu & Wissocq, Thibaut & Gaoua, Yacine & Lamaison, Nicolas, 2023. "Generation and evaluation of a synthetic dataset to improve fault detection in district heating and cooling systems," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223017814
    DOI: 10.1016/j.energy.2023.128387
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223017814
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bode, Gerrit & Thul, Simon & Baranski, Marc & Müller, Dirk, 2020. "Real-world application of machine-learning-based fault detection trained with experimental data," Energy, Elsevier, vol. 198(C).
    2. Gadd, Henrik & Werner, Sven, 2015. "Fault detection in district heating substations," Applied Energy, Elsevier, vol. 157(C), pages 51-59.
    3. Leoni, Paolo & Geyer, Roman & Schmidt, Ralf-Roman, 2020. "Developing innovative business models for reducing return temperatures in district heating systems: Approach and first results," Energy, Elsevier, vol. 195(C).
    4. Yang, Xilian & Zhao, Qunfei & Wang, Yuzhang & Cheng, Kanru, 2023. "Fault signal reconstruction for multi-sensors in gas turbine control systems based on prior knowledge from time series representation," Energy, Elsevier, vol. 262(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jallal, Mohammed Ali & Vallée, Mathieu & Lamaison, Nicolas, 2024. "Fouling fault detection and diagnosis in district heating substations: Validation of a hybrid CNN-based PCA model with uncertainty quantification on virtual replica synthesis and real data," Energy, Elsevier, vol. 312(C).
    2. Leiria, Daniel & Johra, Hicham & Anoruo, Justus & Praulins, Imants & Piscitelli, Marco Savino & Capozzoli, Alfonso & Marszal-Pomianowska, Anna & Pomianowski, Michal Zbigniew, 2025. "Is it returning too hot? Time series segmentation and feature clustering of end-user substation faults in district heating systems," Applied Energy, Elsevier, vol. 381(C).
    3. Bi, Yubo & Wu, Qiulan & Wang, Shilu & Shi, Jihao & Cong, Haiyong & Ye, Lili & Gao, Wei & Bi, Mingshu, 2023. "Hydrogen leakage location prediction at hydrogen refueling stations based on deep learning," Energy, Elsevier, vol. 284(C).
    4. van Dreven, Jonne & Boeva, Veselka & Abghari, Shahrooz & Grahn, Håkan & Al Koussa, Jad, 2024. "A systematic approach for data generation for intelligent fault detection and diagnosis in District Heating," Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benakopoulos, Theofanis & Tunzi, Michele & Salenbien, Robbe & Svendsen, Svend, 2021. "Strategy for low-temperature operation of radiator systems using data from existing digital heat cost allocators," Energy, Elsevier, vol. 231(C).
    2. Stecher, Dominik & Neumayer, Martin & Ramachandran, Adithya & Hort, Anastasia & Maier, Andreas & Bücker, Dominikus & Schmidt, Jochen, 2024. "Creating a labeled district heating data set: From anomaly detection towards fault detection," Energy, Elsevier, vol. 313(C).
    3. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    4. Leiria, Daniel & Johra, Hicham & Anoruo, Justus & Praulins, Imants & Piscitelli, Marco Savino & Capozzoli, Alfonso & Marszal-Pomianowska, Anna & Pomianowski, Michal Zbigniew, 2025. "Is it returning too hot? Time series segmentation and feature clustering of end-user substation faults in district heating systems," Applied Energy, Elsevier, vol. 381(C).
    5. van Dreven, Jonne & Boeva, Veselka & Abghari, Shahrooz & Grahn, Håkan & Al Koussa, Jad, 2024. "A systematic approach for data generation for intelligent fault detection and diagnosis in District Heating," Energy, Elsevier, vol. 307(C).
    6. Neumayer, Martin & Stecher, Dominik & Grimm, Sebastian & Maier, Andreas & Bücker, Dominikus & Schmidt, Jochen, 2023. "Fault and anomaly detection in district heating substations: A survey on methodology and data sets," Energy, Elsevier, vol. 276(C).
    7. Zhao, Hang & Zhai, Xiongfei & Liao, Zengbu & Li, Zichen & Song, Zhiping, 2025. "Gas turbine thrust estimation in sensor drift scenarios using a three-stage multi-target domain adaptation method," Energy, Elsevier, vol. 314(C).
    8. Sara Månsson & Kristin Davidsson & Patrick Lauenburg & Marcus Thern, 2018. "Automated Statistical Methods for Fault Detection in District Heating Customer Installations," Energies, MDPI, vol. 12(1), pages 1-18, December.
    9. Zhang, Fan & Bales, Chris & Fleyeh, Hasan, 2021. "Night setback identification of district heat substations using bidirectional long short term memory with attention mechanism," Energy, Elsevier, vol. 224(C).
    10. Schaffer, Markus & Vera-Valdés, J. Eduardo & Marszal-Pomianowska, Anna, 2024. "Exploring smart heat meter data: A co-clustering driven approach to analyse the energy use of single-family houses," Applied Energy, Elsevier, vol. 371(C).
    11. Månsson, Sara & Johansson Kallioniemi, Per-Olof & Thern, Marcus & Van Oevelen, Tijs & Sernhed, Kerstin, 2019. "Faults in district heating customer installations and ways to approach them: Experiences from Swedish utilities," Energy, Elsevier, vol. 180(C), pages 163-174.
    12. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    13. Nord, Natasa & Shakerin, Mohammad & Tereshchenko, Tymofii & Verda, Vittorio & Borchiellini, Romano, 2021. "Data informed physical models for district heating grids with distributed heat sources to understand thermal and hydraulic aspects," Energy, Elsevier, vol. 222(C).
    14. Chen, Jianli & Zhang, Liang & Li, Yanfei & Shi, Yifu & Gao, Xinghua & Hu, Yuqing, 2022. "A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    15. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    16. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    17. Lygnerud, Kristina & Yang, Ying, 2024. "Capturing flexibility gains by price models for district heating," Energy, Elsevier, vol. 294(C).
    18. Søren Djørup & Karl Sperling & Steffen Nielsen & Poul Alborg Østergaard & Jakob Zinck Thellufsen & Peter Sorknæs & Henrik Lund & David Drysdale, 2020. "District Heating Tariffs, Economic Optimisation and Local Strategies during Radical Technological Change," Energies, MDPI, vol. 13(5), pages 1-15, March.
    19. Benakopoulos, Theofanis & Tunzi, Michele & Salenbien, Robbe & Hansen, Kasper Klan & Svendsen, Svend, 2022. "Implementation of a strategy for low-temperature operation of radiator systems using data from existing digital heat cost allocators," Energy, Elsevier, vol. 251(C).
    20. Wang, Zhanwei & Wang, Zhiwei & He, Suowei & Gu, Xiaowei & Yan, Zeng Feng, 2017. "Fault detection and diagnosis of chillers using Bayesian network merged distance rejection and multi-source non-sensor information," Applied Energy, Elsevier, vol. 188(C), pages 200-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223017814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.