IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v157y2015icp51-59.html
   My bibliography  Save this article

Fault detection in district heating substations

Author

Listed:
  • Gadd, Henrik
  • Werner, Sven

Abstract

Current temperature levels in European district heating networks are still too high with respect to future conditions as customer heat demands decrease and new possible heat source options emerge. A considerable reduction of temperature levels can be accomplished by eliminating current faults in substations and customer heating systems. These faults do not receive proper attention today, because neither substations nor customer heating systems are centrally supervised. The focus of this paper has been to identify these faults by annual series of hourly meter readings obtained from automatic meter reading systems at 135 substations in two Swedish district heating systems. Based on threshold methods, various faults were identified in 74% of the substations. The identified faults were divided into three different fault groups: Unsuitable heat load pattern, low average annual temperature difference, and poor substation control. The most important conclusion from this early study of big data volumes is that automatic meter reading systems can provide proactive fault detection by continuous commissioning of district heating substations in the future. A complete reduction of current faults corresponds to approximately half the required reduction of the current temperature levels in the effort toward future low-temperature district heating networks.

Suggested Citation

  • Gadd, Henrik & Werner, Sven, 2015. "Fault detection in district heating substations," Applied Energy, Elsevier, vol. 157(C), pages 51-59.
  • Handle: RePEc:eee:appene:v:157:y:2015:i:c:p:51-59
    DOI: 10.1016/j.apenergy.2015.07.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915009010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.07.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Åberg, M. & Henning, D., 2011. "Optimisation of a Swedish district heating system with reduced heat demand due to energy efficiency measures in residential buildings," Energy Policy, Elsevier, vol. 39(12), pages 7839-7852.
    2. Magnusson, Dick, 2012. "Swedish district heating—A system in stagnation: Current and future trends in the district heating sector," Energy Policy, Elsevier, vol. 48(C), pages 449-459.
    3. Kiluk, Sebastian, 2012. "Algorithmic acquisition of diagnostic patterns in district heating billing system," Applied Energy, Elsevier, vol. 91(1), pages 146-155.
    4. Gadd, Henrik & Werner, Sven, 2013. "Heat load patterns in district heating substations," Applied Energy, Elsevier, vol. 108(C), pages 176-183.
    5. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olsson, Linda & Wetterlund, Elisabeth & Söderström, Mats, 2015. "Assessing the climate impact of district heating systems with combined heat and power production and industrial excess heat," Resources, Conservation & Recycling, Elsevier, vol. 96(C), pages 31-39.
    2. Volkova, Anna & Mašatin, Vladislav & Siirde, Andres, 2018. "Methodology for evaluating the transition process dynamics towards 4th generation district heating networks," Energy, Elsevier, vol. 150(C), pages 253-261.
    3. Antoine Reguis & Behrang Vand & John Currie, 2021. "Challenges for the Transition to Low-Temperature Heat in the UK: A Review," Energies, MDPI, vol. 14(21), pages 1-26, November.
    4. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    5. Østergaard, Dorte Skaarup & Svendsen, Svend, 2018. "Experience from a practical test of low-temperature district heating for space heating in five Danish single-family houses from the 1930s," Energy, Elsevier, vol. 159(C), pages 569-578.
    6. Xue, Puning & Zhou, Zhigang & Fang, Xiumu & Chen, Xin & Liu, Lin & Liu, Yaowen & Liu, Jing, 2017. "Fault detection and operation optimization in district heating substations based on data mining techniques," Applied Energy, Elsevier, vol. 205(C), pages 926-940.
    7. Sara Månsson & Kristin Davidsson & Patrick Lauenburg & Marcus Thern, 2018. "Automated Statistical Methods for Fault Detection in District Heating Customer Installations," Energies, MDPI, vol. 12(1), pages 1-18, December.
    8. Østergaard, Dorte Skaarup & Tunzi, Michele & Svendsen, Svend, 2021. "What does a well-functioning heating system look like? Investigation of ten Danish buildings that utilize district heating efficiently," Energy, Elsevier, vol. 227(C).
    9. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    10. Pasichnyi, Oleksii & Wallin, Jörgen & Kordas, Olga, 2019. "Data-driven building archetypes for urban building energy modelling," Energy, Elsevier, vol. 181(C), pages 360-377.
    11. Østergaard, Dorte Skaarup & Svendsen, Svend, 2016. "Replacing critical radiators to increase the potential to use low-temperature district heating – A case study of 4 Danish single-family houses from the 1930s," Energy, Elsevier, vol. 110(C), pages 75-84.
    12. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    13. Sarran, Lucile & Smith, Kevin M. & Hviid, Christian A. & Rode, Carsten, 2022. "Grey-box modelling and virtual sensors enabling continuous commissioning of hydronic floor heating," Energy, Elsevier, vol. 261(PB).
    14. Pereverza, Kateryna & Pasichnyi, Oleksii & Lazarevic, David & Kordas, Olga, 2017. "Strategic planning for sustainable heating in cities: A morphological method for scenario development and selection," Applied Energy, Elsevier, vol. 186(P2), pages 115-125.
    15. Kiluk, S., 2014. "Dynamic classification system in large-scale supervision of energy efficiency in buildings," Applied Energy, Elsevier, vol. 132(C), pages 1-14.
    16. Brange, Lisa & Englund, Jessica & Lauenburg, Patrick, 2016. "Prosumers in district heating networks – A Swedish case study," Applied Energy, Elsevier, vol. 164(C), pages 492-500.
    17. Gustafsson, Marcus & Gustafsson, Moa Swing & Myhren, Jonn Are & Bales, Chris & Holmberg, Sture, 2016. "Techno-economic analysis of energy renovation measures for a district heated multi-family house," Applied Energy, Elsevier, vol. 177(C), pages 108-116.
    18. Xiaofeng Guo & Alain Pascal Goumba & Cheng Wang, 2019. "Comparison of Direct and Indirect Active Thermal Energy Storage Strategies for Large-Scale Solar Heating Systems," Energies, MDPI, vol. 12(10), pages 1-18, May.
    19. Nguyen, Truong & Gustavsson, Leif & Dodoo, Ambrose & Tettey, Uniben Yao Ayikoe, 2020. "Implications of supplying district heat to a new urban residential area in Sweden," Energy, Elsevier, vol. 194(C).
    20. Simeoni, Patrizia & Ciotti, Gellio & Cottes, Mattia & Meneghetti, Antonella, 2019. "Integrating industrial waste heat recovery into sustainable smart energy systems," Energy, Elsevier, vol. 175(C), pages 941-951.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:157:y:2015:i:c:p:51-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.