IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5817-d1211083.html
   My bibliography  Save this article

Simulation Analysis of Mechanical Fluidized Bed in Adsorption Chillers

Author

Listed:
  • Wojciech Kalawa

    (Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland)

  • Karol Sztekler

    (Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland)

  • Agata Mlonka-Mędrala

    (Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland)

  • Ewelina Radomska

    (Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland)

  • Wojciech Nowak

    (Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland)

  • Łukasz Mika

    (Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland)

  • Tomasz Bujok

    (Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland)

  • Piotr Boruta

    (Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

Adsorption systems are alternatives to compressor cooling systems. Apart from many advantages, these systems are characterized by low COP and SCP parameters. One of the most promising options to improve the performance of adsorption chillers is the replacement of the stationary bed with a fluidized one. A fluidized bed significantly increases the heat and mass transfer within the bed, enables better contact between gas and solid phases, and results in the proper mixing of adsorbent particles. This paper presents the possibility of using fluidized beds in adsorption chillers. This paper shows the results of CFD numerical modelling of the operation of a fluidized bed for an adsorption chiller and simulations of the bed temperature profiles during the adsorption and desorption processes of sorbent in a fluidized bed. This article presents an analysis of CFD simulation results for the optimal angle of heat exchangers.

Suggested Citation

  • Wojciech Kalawa & Karol Sztekler & Agata Mlonka-Mędrala & Ewelina Radomska & Wojciech Nowak & Łukasz Mika & Tomasz Bujok & Piotr Boruta, 2023. "Simulation Analysis of Mechanical Fluidized Bed in Adsorption Chillers," Energies, MDPI, vol. 16(15), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5817-:d:1211083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5817/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5817/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamed, Ahmed M., 2005. "Experimental investigation on the adsorption/desorption processes using solid desiccant in an inclined-fluidized bed," Renewable Energy, Elsevier, vol. 30(12), pages 1913-1921.
    2. Karol Sztekler & Wojciech Kalawa & Łukasz Mika & Agata Mlonka-Medrala & Marcin Sowa & Wojciech Nowak, 2021. "Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller," Energies, MDPI, vol. 14(4), pages 1-13, February.
    3. Wang, D.C. & Li, Y.H. & Li, D. & Xia, Y.Z. & Zhang, J.P., 2010. "A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 344-353, January.
    4. Grabowska, Karolina & Krzywanski, Jaroslaw & Nowak, Wojciech & Wesolowska, Marta, 2018. "Construction of an innovative adsorbent bed configuration in the adsorption chiller - Selection criteria for effective sorbent-glue pair," Energy, Elsevier, vol. 151(C), pages 317-323.
    5. Choudhury, Biplab & Saha, Bidyut Baran & Chatterjee, Pradip K. & Sarkar, Jyoti Prakas, 2013. "An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling," Applied Energy, Elsevier, vol. 104(C), pages 554-567.
    6. Karol Sztekler & Wojciech Kalawa & Łukasz Mika & Marcin Sowa, 2021. "Effect of Metal Additives in the Bed on the Performance Parameters of an Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(21), pages 1-27, November.
    7. Hamed, Ahmed M. & Abd El Rahman, Walaa R. & El-Emam, S.H., 2010. "Experimental study of the transient adsorption/desorption characteristics of silica gel particles in fluidized bed," Energy, Elsevier, vol. 35(6), pages 2468-2483.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Sowa & Karol Sztekler & Agata Mlonka-Mędrala & Łukasz Mika, 2023. "An Overview of Developments In Silica Gel Matrix Composite Sorbents for Adsorption Chillers with Desalination Function," Energies, MDPI, vol. 16(15), pages 1-34, August.
    2. Karol Sztekler & Wojciech Kalawa & Łukasz Mika & Marcin Sowa, 2021. "Effect of Metal Additives in the Bed on the Performance Parameters of an Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(21), pages 1-27, November.
    3. Karol Sztekler, 2021. "Optimisation of Operation of Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(9), pages 1-20, May.
    4. Agata Mlonka-Mędrala, 2023. "Recent Findings on Fly Ash-Derived Zeolites Synthesis and Utilization According to the Circular Economy Concept," Energies, MDPI, vol. 16(18), pages 1-21, September.
    5. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Wang, Dechang & Zhang, Jipeng & Yang, Qirong & Li, Na & Sumathy, K., 2014. "Study of adsorption characteristics in silica gel–water adsorption refrigeration," Applied Energy, Elsevier, vol. 113(C), pages 734-741.
    7. Brancato, V. & Frazzica, A. & Sapienza, A. & Gordeeva, L. & Freni, A., 2015. "Ethanol adsorption onto carbonaceous and composite adsorbents for adsorptive cooling system," Energy, Elsevier, vol. 84(C), pages 177-185.
    8. Chiang, Yuan-Ching & Chen, Chih-Hao & Chiang, Yi-Chin & Chen, Sih-Li, 2016. "Circulating inclined fluidized beds with application for desiccant dehumidification systems," Applied Energy, Elsevier, vol. 175(C), pages 199-211.
    9. Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
    10. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    11. Kim, Dong-Seon & Chang, Young-Soo & Lee, Dae-Young, 2018. "Modelling of an adsorption chiller with adsorbent-coated heat exchangers: Feasibility of a polymer-water adsorption chiller," Energy, Elsevier, vol. 164(C), pages 1044-1061.
    12. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    13. Zhao, Chong & Wang, Yunfeng & Li, Ming & Zhao, Wenkui & Li, Xuejuan & Yu, Qiongfen & Huang, Mengxiao, 2020. "Impact of three different enhancing mass transfer operating characteristics on a solar adsorption refrigeration system with compound parabolic concentrator," Renewable Energy, Elsevier, vol. 152(C), pages 1354-1366.
    14. Chahartaghi, Mahmood & Sheykhi, Mohammad, 2019. "Energy, environmental and economic evaluations of a CCHP system driven by Stirling engine with helium and hydrogen as working gases," Energy, Elsevier, vol. 174(C), pages 1251-1266.
    15. Pinheiro, Joana M. & Salústio, Sérgio & Rocha, João & Valente, Anabela A. & Silva, Carlos M., 2020. "Adsorption heat pumps for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Karol Sztekler & Wojciech Kalawa & Łukasz Mika & Agata Mlonka-Medrala & Marcin Sowa & Wojciech Nowak, 2021. "Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller," Energies, MDPI, vol. 14(4), pages 1-13, February.
    17. Marcin Sosnowski & Jaroslaw Krzywanski & Norbert Skoczylas, 2022. "Adsorption Desalination and Cooling Systems: Advances in Design, Modeling and Performance," Energies, MDPI, vol. 15(11), pages 1-6, May.
    18. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    19. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    20. Lukasz Lasek & Anna Zylka & Jaroslaw Krzywanski & Dorian Skrobek & Karol Sztekler & Wojciech Nowak, 2023. "Review of Fluidized Bed Technology Application for Adsorption Cooling and Desalination Systems," Energies, MDPI, vol. 16(21), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5817-:d:1211083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.