IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7311-d1269496.html
   My bibliography  Save this article

Review of Fluidized Bed Technology Application for Adsorption Cooling and Desalination Systems

Author

Listed:
  • Lukasz Lasek

    (Faculty of Health Sciences, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland)

  • Anna Zylka

    (Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland)

  • Jaroslaw Krzywanski

    (Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland)

  • Dorian Skrobek

    (Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland)

  • Karol Sztekler

    (Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30 St., 30-059 Krakow, Poland)

  • Wojciech Nowak

    (Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30 St., 30-059 Krakow, Poland)

Abstract

Adsorption technology utilizes low-temperature renewable and waste heat sources for cost-effective and environmentally friendly cooling and water desalination systems. However, the problem with existing adsorption refrigerators is the low COP. This is caused by poor heat and mass transfer in existing packed bed designs. The solution to this problem lies in the use of fluidized bed technology, which enhances heat and mass transfer mechanisms. Various approaches to the construction and operation of adsorption systems with a fluidized bed of adsorbent can be found in the literature; hence, the aim of the work is to analyze the existing applications of a fluidized bed in adsorption refrigerators and other systems utilizing sorption beds. There are many methods for improving the energy efficiency of adsorption refrigerators. However, the literature suggests that fluidized bed systems have the potential to significantly improve the energy efficiency of adsorption cooling and desalination systems. Based on the review, it was concluded that using fluidization technology in adsorption cooling and desalination systems can be beneficial and represents significant potential for future research.

Suggested Citation

  • Lukasz Lasek & Anna Zylka & Jaroslaw Krzywanski & Dorian Skrobek & Karol Sztekler & Wojciech Nowak, 2023. "Review of Fluidized Bed Technology Application for Adsorption Cooling and Desalination Systems," Energies, MDPI, vol. 16(21), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7311-:d:1269496
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7311/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7311/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Souza-Santos, Marcio L., 2017. "Proposals for power generation based on processes consuming biomass-glycerol slurries," Energy, Elsevier, vol. 120(C), pages 959-974.
    2. Grabowska, K. & Sztekler, K. & Krzywanski, J. & Sosnowski, M. & Stefanski, S. & Nowak, W., 2021. "Construction of an innovative adsorbent bed configuration in the adsorption chiller part 2. experimental research of coated bed samples," Energy, Elsevier, vol. 215(PA).
    3. Abedi, Mahyar & Tan, Xu & Klausner, James F. & Bénard, Andre, 2023. "Solar desalination chimneys: Investigation on the feasibility of integrating solar chimneys with humidification–dehumidification systems," Renewable Energy, Elsevier, vol. 202(C), pages 88-102.
    4. Wang, Yunfeng & Li, Ming & Ji, Xu & Yu, Qiongfen & Li, Guoliang & Ma, Xun, 2018. "Experimental study of the effect of enhanced mass transfer on the performance improvement of a solar-driven adsorption refrigeration system," Applied Energy, Elsevier, vol. 224(C), pages 417-425.
    5. Karol Sztekler & Wojciech Kalawa & Łukasz Mika & Marcin Sowa, 2021. "Effect of Metal Additives in the Bed on the Performance Parameters of an Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(21), pages 1-27, November.
    6. Rupa, Mahua Jahan & Pal, Animesh & Saha, Bidyut Baran, 2020. "Activated carbon-graphene nanoplatelets based green cooling system: Adsorption kinetics, heat of adsorption, and thermodynamic performance," Energy, Elsevier, vol. 193(C).
    7. Chiang, Yuan-Ching & Chen, Chih-Hao & Chiang, Yi-Chin & Chen, Sih-Li, 2016. "Circulating inclined fluidized beds with application for desiccant dehumidification systems," Applied Energy, Elsevier, vol. 175(C), pages 199-211.
    8. Karol Sztekler & Wojciech Kalawa & Łukasz Mika & Agata Mlonka-Medrala & Marcin Sowa & Wojciech Nowak, 2021. "Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller," Energies, MDPI, vol. 14(4), pages 1-13, February.
    9. Chen, C.J. & Wang, R.Z. & Xia, Z.Z. & Kiplagat, J.K. & Lu, Z.S., 2010. "Study on a compact silica gel-water adsorption chiller without vacuum valves: Design and experimental study," Applied Energy, Elsevier, vol. 87(8), pages 2673-2681, August.
    10. Grabowska, Karolina & Krzywanski, Jaroslaw & Nowak, Wojciech & Wesolowska, Marta, 2018. "Construction of an innovative adsorbent bed configuration in the adsorption chiller - Selection criteria for effective sorbent-glue pair," Energy, Elsevier, vol. 151(C), pages 317-323.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul, Shubha Deep & Kumar, K. Ravi, 2025. "Advancements in adsorption bed for cooling applications: A comprehensive review of configurations and operating parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wojciech Kalawa & Karol Sztekler & Agata Mlonka-Mędrala & Ewelina Radomska & Wojciech Nowak & Łukasz Mika & Tomasz Bujok & Piotr Boruta, 2023. "Simulation Analysis of Mechanical Fluidized Bed in Adsorption Chillers," Energies, MDPI, vol. 16(15), pages 1-22, August.
    2. Marcin Sowa & Karol Sztekler & Agata Mlonka-Mędrala & Łukasz Mika, 2023. "An Overview of Developments In Silica Gel Matrix Composite Sorbents for Adsorption Chillers with Desalination Function," Energies, MDPI, vol. 16(15), pages 1-34, August.
    3. Chauhan, P.R. & Kaushik, S.C. & Tyagi, S.K., 2022. "Current status and technological advancements in adsorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Anna Kulakowska & Anna Zylka & Karolina Grabowska & Katarzyna Ciesielska & Wojciech Nowak, 2020. "Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)," Energies, MDPI, vol. 13(24), pages 1-16, December.
    6. Grabowska, K. & Sztekler, K. & Krzywanski, J. & Sosnowski, M. & Stefanski, S. & Nowak, W., 2021. "Construction of an innovative adsorbent bed configuration in the adsorption chiller part 2. experimental research of coated bed samples," Energy, Elsevier, vol. 215(PA).
    7. Zhao, Chong & Wang, Yunfeng & Li, Ming & Zhao, Wenkui & Li, Xuejuan & Yu, Qiongfen & Huang, Mengxiao, 2020. "Impact of three different enhancing mass transfer operating characteristics on a solar adsorption refrigeration system with compound parabolic concentrator," Renewable Energy, Elsevier, vol. 152(C), pages 1354-1366.
    8. Karolina Grabowska & Jaroslaw Krzywanski & Anna Zylka & Anna Kulakowska & Dorian Skrobek & Marcin Sosnowski & Radomir Ščurek & Wojciech Nowak & Tomasz Czakiert, 2024. "Implementation of Fluidized Bed Concept to Improve Heat Transfer in Ecological Adsorption Cooling and Desalination Systems," Energies, MDPI, vol. 17(2), pages 1-15, January.
    9. Paul, Shubha Deep & Kumar, K. Ravi, 2025. "Advancements in adsorption bed for cooling applications: A comprehensive review of configurations and operating parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    10. Marcin Sosnowski & Jaroslaw Krzywanski & Norbert Skoczylas, 2022. "Adsorption Desalination and Cooling Systems: Advances in Design, Modeling and Performance," Energies, MDPI, vol. 15(11), pages 1-6, May.
    11. Karol Sztekler & Wojciech Kalawa & Łukasz Mika & Marcin Sowa, 2021. "Effect of Metal Additives in the Bed on the Performance Parameters of an Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(21), pages 1-27, November.
    12. Karol Sztekler, 2021. "Optimisation of Operation of Adsorption Chiller with Desalination Function," Energies, MDPI, vol. 14(9), pages 1-20, May.
    13. Karol Sztekler & Agata Mlonka-Mędrala & Nezar H. Khdary & Wojciech Kalawa & Wojciech Nowak & Łukasz Mika, 2022. "Possibility of Advanced Modified-Silica-Based Porous Materials Utilisation in Water Adsorption Processes—A Comparative Study," Energies, MDPI, vol. 15(1), pages 1-15, January.
    14. Agata Mlonka-Mędrala, 2023. "Recent Findings on Fly Ash-Derived Zeolites Synthesis and Utilization According to the Circular Economy Concept," Energies, MDPI, vol. 16(18), pages 1-21, September.
    15. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Elsayed, Ahmed M. & Gaheen, Osama A. & Abdelrahman, M.A. & Aziz, Mohamed A., 2024. "An experimental investigation of a solar chimney integrated with a bladeless wind turbine for sustainable energy harvesting," Energy, Elsevier, vol. 304(C).
    17. Mian Muhammad-Ahson Aslam & Hsion-Wen Kuo & Walter Den & Muhammad Usman & Muhammad Sultan & Hadeed Ashraf, 2021. "Functionalized Carbon Nanotubes (CNTs) for Water and Wastewater Treatment: Preparation to Application," Sustainability, MDPI, vol. 13(10), pages 1-54, May.
    18. Łukasz Mika & Tomasz Bujok & Karol Sztekler & Wojciech Kalawa & Ewelina Radomska & Agata Mlonka-Mędrala & Jakub Čespiva & Piotr Boruta, 2025. "Development of New Composite Beds for Enhancing the Heat Transfer in Adsorption Cooling Systems," Energies, MDPI, vol. 18(3), pages 1-17, January.
    19. Jaroslaw Krzywanski, 2019. "A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods," Energies, MDPI, vol. 12(23), pages 1-32, November.
    20. Santori, Giulio & Sapienza, Alessio & Freni, Angelo, 2012. "A dynamic multi-level model for adsorptive solar cooling," Renewable Energy, Elsevier, vol. 43(C), pages 301-312.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7311-:d:1269496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.