IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v120y2017icp959-974.html
   My bibliography  Save this article

Proposals for power generation based on processes consuming biomass-glycerol slurries

Author

Listed:
  • de Souza-Santos, Marcio L.

Abstract

A preliminary theoretical feasibility study on the application of new concepts for thermoelectric power generation consuming biomass mixed with glycerol has been completed. Two main alternatives (A and B) have been envisage. At Configuration A, wet sugar-cane bagasse (SCB) is dried at atmospheric pressure. From that, the biomass is mixed with raw glycerol to obtain a high dry-solid content slurry, which is pumped into the gasifier. This greatly simplifies the feeding of particulate solids into pressurized vessels, which otherwise would require costly and cumbersome series of lock hoppers operating sequentially. The produced gas is cleaned to bring the particle content and size as well alkaline concentration within the acceptable limits for injections into standard gas turbines. At Configuration B, the wet SCB is mixed directly with raw glycerol and pumped into the gasifier, therefore dispensing the drying phase. Optimizations of the gasifier characteristics and air injection rates have been conducted having the exergetic efficiency as objective function. In both cases, the complete power generation concepts are optimized aiming the maximization of respective 1st Law efficiencies.

Suggested Citation

  • de Souza-Santos, Marcio L., 2017. "Proposals for power generation based on processes consuming biomass-glycerol slurries," Energy, Elsevier, vol. 120(C), pages 959-974.
  • Handle: RePEc:eee:energy:v:120:y:2017:i:c:p:959-974
    DOI: 10.1016/j.energy.2016.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216318096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roth, Ian F. & Ambs, Lawrence L., 2004. "Incorporating externalities into a full cost approach to electric power generation life-cycle costing," Energy, Elsevier, vol. 29(12), pages 2125-2144.
    2. Leoneti, Alexandre Bevilacqua & Aragão-Leoneti, Valquiria & de Oliveira, Sonia Valle Walter Borges, 2012. "Glycerol as a by-product of biodiesel production in Brazil: Alternatives for the use of unrefined glycerol," Renewable Energy, Elsevier, vol. 45(C), pages 138-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaroslaw Krzywanski, 2019. "A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods," Energies, MDPI, vol. 12(23), pages 1-32, November.
    2. Meng, Xiaoxiao & Zhou, Wei & Yan, Yonghong & Ren, Xiaohan & Ismail, Tamer M. & Sun, Rui, 2020. "Effects of preheating primary air and fuel size on the combustion characteristics of blended pinewood and corn straw in a fixed bed," Energy, Elsevier, vol. 210(C).
    3. Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & Zhou, Wei & Ren, Xiaohan & Zhang, Ruihan, 2018. "Parametric studies on corn straw combustion characteristics in a fixed bed: Ash and moisture content," Energy, Elsevier, vol. 158(C), pages 192-203.
    4. Francesco Miccio & Federica Raganati & Paola Ammendola & Farouk Okasha & Michele Miccio, 2021. "Fluidized Bed Combustion and Gasification of Fossil and Renewable Slurry Fuels," Energies, MDPI, vol. 14(22), pages 1-16, November.
    5. Cadavez, Carina Crisp & de Souza-Santos, Marcio L., 2021. "Efficiency of a power generation alternative regarding the composition of feeding biomass-glycerol slurry; theoretical assessment," Energy, Elsevier, vol. 214(C).
    6. Meng, Xiaoxiao & Sun, Rui & Ismail, Tamer M. & El-Salam, M. Abd & Zhou, Wei & Zhang, Ruihan & Ren, Xiaohan, 2018. "Assessment of primary air on corn straw in a fixed bed combustion using Eulerian-Eulerian approach," Energy, Elsevier, vol. 151(C), pages 501-519.
    7. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Anna Zylka & Jaroslaw Krzywanski & Tomasz Czakiert & Kamil Idziak & Marcin Sosnowski & Marcio L. de Souza-Santos & Karol Sztekler & Wojciech Nowak, 2020. "Modeling of the Chemical Looping Combustion of Hard Coal and Biomass Using Ilmenite as the Oxygen Carrier," Energies, MDPI, vol. 13(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Integrating power systems for remote island energy supply: Lessons from Mykines, Faroe Islands," Renewable Energy, Elsevier, vol. 85(C), pages 642-648.
    2. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs," Energy Policy, Elsevier, vol. 74(C), pages 569-578.
    3. Sittijunda, Sureewan & Reungsang, Alissara, 2020. "Valorization of crude glycerol into hydrogen, 1,3-propanediol, and ethanol in an up-flow anaerobic sludge blanket (UASB) reactor under thermophilic conditions," Renewable Energy, Elsevier, vol. 161(C), pages 361-372.
    4. Cadavez, Carina Crisp & de Souza-Santos, Marcio L., 2021. "Efficiency of a power generation alternative regarding the composition of feeding biomass-glycerol slurry; theoretical assessment," Energy, Elsevier, vol. 214(C).
    5. Nir Becker & David Soloveitchik & Moshe Olshansky, 2012. "A Weighted Average Incorporation of Pollution Costs into the Electrical Expansion Planning," Energy & Environment, , vol. 23(1), pages 1-15, January.
    6. Bachmann, Till M. & van der Kamp, Jonathan, 2014. "Environmental cost-benefit analysis and the EU (European Union) Industrial Emissions Directive: Exploring the societal efficiency of a DeNOx retrofit at a coal-fired power plant," Energy, Elsevier, vol. 68(C), pages 125-139.
    7. Magnani, Natalia & Vaona, Andrea, 2013. "Regional spillover effects of renewable energy generation in Italy," Energy Policy, Elsevier, vol. 56(C), pages 663-671.
    8. Zappini, Giovanni & Cocca, Paola & Rossi, Diana, 2010. "Performance analysis of energy recovery in an Italian municipal solid waste landfill," Energy, Elsevier, vol. 35(12), pages 5063-5069.
    9. Moslem Mousavi, Sayed & Bagheri Ghanbarabadi, Morteza & Bagheri Moghadam, Naser, 2012. "The competitiveness of wind power compared to existing methods of electricity generation in Iran," Energy Policy, Elsevier, vol. 42(C), pages 651-656.
    10. Bueno, C. & Carta, J.A., 2006. "Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 312-340, August.
    11. Stocker Klaus, 2020. "Financial and Economic Assessment of Tidal Stream Energy—A Case Study," IJFS, MDPI, vol. 8(3), pages 1-20, August.
    12. John Aldersey-Williams & Peter A. Strachan & Ian D. Broadbent, 2020. "Validating the “Seven Functions” Model of Technological Innovations Systems Theory with Industry Stakeholders—A Review from UK Offshore Renewables," Energies, MDPI, vol. 13(24), pages 1-21, December.
    13. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    14. Alizadeh, Sadegh & Avami, Akram, 2021. "Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran," Renewable Energy, Elsevier, vol. 179(C), pages 1548-1564.
    15. Wang, Zanxin & Wei, Wei, 2017. "External cost of photovoltaic oriented silicon production: A case in China," Energy Policy, Elsevier, vol. 107(C), pages 437-447.
    16. Jenniches, Simon & Worrell, Ernst & Fumagalli, Elena, 2019. "Regional economic and environmental impacts of wind power developments: A case study of a German region," Energy Policy, Elsevier, vol. 132(C), pages 499-514.
    17. He, Quan (Sophia) & McNutt, Josiah & Yang, Jie, 2017. "Utilization of the residual glycerol from biodiesel production for renewable energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 63-76.
    18. Tazi, Nacef & Safaei, Fatemeh & Hnaien, Faicel, 2022. "Assessment of the levelized cost of energy using a stochastic model," Energy, Elsevier, vol. 238(PB).
    19. Jacqueline Adelowo & Mathias Mier & Christoph Weissbart, 2021. "Taxation of Carbon Emissions and Air Pollution in Intertemporal Optimization Frameworks with Social and Private Discount Rates," ifo Working Paper Series 360, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    20. Li, Chiao-Ting & Peng, Huei & Sun, Jing, 2014. "Life cycle cost analysis of wind power considering stochastic uncertainties," Energy, Elsevier, vol. 75(C), pages 411-418.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:120:y:2017:i:c:p:959-974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.