IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224040337.html
   My bibliography  Save this article

An ensemble model for the energy consumption prediction of residential buildings

Author

Listed:
  • Mohan, Ritwik
  • Pachauri, Nikhil

Abstract

The HVAC unit helps reduce overall energy consumption. ML models can enhance HVAC performance by accurately predicting a building's energy consumption and load utilization. Therefore, this study presents a stacked ensemble model that incorporates extreme gradient boosting (XGB), decision tree (DT), and Random Forest (RF) algorithms to predict the energy consumption of heating and cooling loads (HL and CL) in buildings. The performance of the proposed stacked ensemble is compared to other machine learning predictive models such as Ridge, Lasso, K Nearest Neighbor (KNN), Support Vector Regression (SVR), and Artificial Neural Network (ANN). Bayesian optimization is used to determine the hyperparameter values of the ML algorithms. The results show that the proposed predictive model has the lowest root mean square value (RMSE) of 0.484 and 0.948 for HL and CL, respectively, compared to other machine learning models. Additionally, the efficacy of the stack model is evaluated using a time series dataset about HVAC energy consumption in residential buildings. The simulation results indicate that the stack model outperformed the other prediction models, achieving a root mean square error (RMSE) of 0.1810. In conclusion, the proposed predictive model is more efficient than traditional models in forecasting energy consumption by HL, CL, and HVAC systems.

Suggested Citation

  • Mohan, Ritwik & Pachauri, Nikhil, 2025. "An ensemble model for the energy consumption prediction of residential buildings," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040337
    DOI: 10.1016/j.energy.2024.134255
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224040337
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134255?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bian, Jianxiao & Wang, Jiarui & Yece, Qian, 2024. "A novel study on power consumption of an HVAC system using CatBoost and AdaBoost algorithms combined with the metaheuristic algorithms," Energy, Elsevier, vol. 302(C).
    2. Pachauri, Nikhil & Ahn, Chang Wook, 2023. "Weighted aggregated ensemble model for energy demand management of buildings," Energy, Elsevier, vol. 263(PC).
    3. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    4. Li, Xinyi & Yao, Runming, 2020. "A machine-learning-based approach to predict residential annual space heating and cooling loads considering occupant behaviour," Energy, Elsevier, vol. 212(C).
    5. Massaoudi, Mohamed & Refaat, Shady S. & Chihi, Ines & Trabelsi, Mohamed & Oueslati, Fakhreddine S. & Abu-Rub, Haitham, 2021. "A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-Term Load Forecasting," Energy, Elsevier, vol. 214(C).
    6. Tran, Duc-Hoc & Luong, Duc-Long & Chou, Jui-Sheng, 2020. "Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings," Energy, Elsevier, vol. 191(C).
    7. Yesilyurt, Hasan & Dokuz, Yesim & Dokuz, Ahmet Sakir, 2024. "Data-driven energy consumption prediction of a university office building using machine learning algorithms," Energy, Elsevier, vol. 310(C).
    8. Lu, Chujie & Li, Sihui & Reddy Penaka, Santhan & Olofsson, Thomas, 2023. "Automated machine learning-based framework of heating and cooling load prediction for quick residential building design," Energy, Elsevier, vol. 274(C).
    9. Xu, Yuanjin & Li, Fei & Asgari, Armin, 2022. "Prediction and optimization of heating and cooling loads in a residential building based on multi-layer perceptron neural network and different optimization algorithms," Energy, Elsevier, vol. 240(C).
    10. Zhou, Xinlei & Du, Han & Xue, Shan & Ma, Zhenjun, 2024. "Recent advances in data mining and machine learning for enhanced building energy management," Energy, Elsevier, vol. 307(C).
    11. Xu, Weiyan & Tu, Jielei & Xu, Ning & Liu, Zuming, 2024. "Predicting daily heating energy consumption in residential buildings through integration of random forest model and meta-heuristic algorithms," Energy, Elsevier, vol. 301(C).
    12. Afzal, Sadegh & Ziapour, Behrooz M. & Shokri, Afshar & Shakibi, Hamid & Sobhani, Behnam, 2023. "Building energy consumption prediction using multilayer perceptron neural network-assisted models; comparison of different optimization algorithms," Energy, Elsevier, vol. 282(C).
    13. Khajavi, Hamed & Rastgoo, Amir, 2023. "Improving the prediction of heating energy consumed at residential buildings using a combination of support vector regression and meta-heuristic algorithms," Energy, Elsevier, vol. 272(C).
    14. Dasi, He & Ying, Zhang & Ashab, MD Faisal Bin, 2024. "Proposing hybrid prediction approaches with the integration of machine learning models and metaheuristic algorithms to forecast the cooling and heating load of buildings," Energy, Elsevier, vol. 291(C).
    15. Wang, Guimei & Moayedi, Hossein & Thi, Quynh T. & Mirzaei, Mojtaba, 2024. "Evaluation of heating load energy performance in residential buildings through five nature-inspired optimization algorithms," Energy, Elsevier, vol. 302(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pachauri, Nikhil & Ahn, Chang Wook, 2023. "Weighted aggregated ensemble model for energy demand management of buildings," Energy, Elsevier, vol. 263(PC).
    2. Cao, Wenqiang & Yu, Junqi & Chao, Mengyao & Wang, Jingqi & Yang, Siyuan & Zhou, Meng & Wang, Meng, 2023. "Short-term energy consumption prediction method for educational buildings based on model integration," Energy, Elsevier, vol. 283(C).
    3. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    4. Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
    5. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    6. Afzal, Sadegh & Ziapour, Behrooz M. & Shokri, Afshar & Shakibi, Hamid & Sobhani, Behnam, 2023. "Building energy consumption prediction using multilayer perceptron neural network-assisted models; comparison of different optimization algorithms," Energy, Elsevier, vol. 282(C).
    7. Leng, Chunyang & Jia, Mingxing & Zheng, Haijin & Deng, Jibin & Niu, Dapeng, 2023. "Dynamic liquid level prediction in oil wells during oil extraction based on WOA-AM-LSTM-ANN model using dynamic and static information," Energy, Elsevier, vol. 282(C).
    8. Zhang, Xiaofeng & Kong, Xiaoying & Yan, Renshi & Liu, Yuting & Xia, Peng & Sun, Xiaoqin & Zeng, Rong & Li, Hongqiang, 2023. "Data-driven cooling, heating and electrical load prediction for building integrated with electric vehicles considering occupant travel behavior," Energy, Elsevier, vol. 264(C).
    9. Yan, Xiuying & Ji, Xingxing & Meng, Qinglong & Sun, Hang & Lei, Yu, 2024. "A hybrid prediction model of improved bidirectional long short-term memory network for cooling load based on PCANet and attention mechanism," Energy, Elsevier, vol. 292(C).
    10. Xu, Weiyan & Tu, Jielei & Xu, Ning & Liu, Zuming, 2024. "Predicting daily heating energy consumption in residential buildings through integration of random forest model and meta-heuristic algorithms," Energy, Elsevier, vol. 301(C).
    11. Panagiotis Tsikas & Athanasios Chassiakos & Vasileios Papadimitropoulos & Antonios Papamanolis, 2025. "BIM-Based Machine Learning Application for Parametric Assessment of Building Energy Performance," Energies, MDPI, vol. 18(1), pages 1-24, January.
    12. Fan Yang & Qian Mao, 2023. "Auto-Evaluation Model for the Prediction of Building Energy Consumption That Combines Modified Kalman Filtering and Long Short-Term Memory," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    13. He, Yan & Zhang, Hongli & Dong, Yingchao & Wang, Cong & Ma, Ping, 2024. "Residential net load interval prediction based on stacking ensemble learning," Energy, Elsevier, vol. 296(C).
    14. Chen, Feng & Deng, Hongyu & Zhang, Xiaoying, 2024. "IG-ENT:A innovative ensemble approach for the flow prediction of main steam system in thermal power plant," Energy, Elsevier, vol. 313(C).
    15. Cui, Xuyang & Zhu, Junda & Jia, Lifu & Wang, Jiahui & Wu, Yusen, 2024. "A novel heat load prediction model of district heating system based on hybrid whale optimization algorithm (WOA) and CNN-LSTM with attention mechanism," Energy, Elsevier, vol. 312(C).
    16. Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "District heating load patterns and short-term forecasting for buildings and city level," Energy, Elsevier, vol. 289(C).
    17. Liang, Chenjiyu & Li, Xianting & Meng, Xiangjun & Shi, Wenxing & Gu, Junqiang & Wang, Baolong & Lv, Yanbo, 2025. "A year-round efficient air source heat pump with separate and distant heat extraction for non-decaying heating capacity during defrosting," Energy, Elsevier, vol. 315(C).
    18. Li, Xuetao & Wang, Ziwei & Yang, Chengying & Bozkurt, Ayhan, 2024. "An advanced framework for net electricity consumption prediction: Incorporating novel machine learning models and optimization algorithms," Energy, Elsevier, vol. 296(C).
    19. Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    20. Andreas Lenk & Marcus Vogt & Christoph Herrmann, 2024. "An Approach to Predicting Energy Demand Within Automobile Production Using the Temporal Fusion Transformer Model," Energies, MDPI, vol. 18(1), pages 1-34, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.