IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224010314.html
   My bibliography  Save this article

A framework for electricity load forecasting based on attention mechanism time series depthwise separable convolutional neural network

Author

Listed:
  • Xu, Huifeng
  • Hu, Feihu
  • Liang, Xinhao
  • Zhao, Guoqing
  • Abugunmi, Mohammad

Abstract

Electricity load exhibits daily and weekly cyclical patterns as well as random characteristics. At present, prevailing deep learning models cannot learn electricity load cyclical and stochastic features adequately. This results in insufficient prediction accuracy and the scalability of current methods. To tackle these difficulties, this paper proposes a framework for electrical load prediction based on an Attention Mechanism Time Series Depthwise Separable Convolutional Neural Network (ELPF-ATDSCN). The framework starts by using the Maximum Information Coefficient for exogenous variable selection. It then incorporates a seasonal decomposition algorithm with manual feature engineering to extract the cyclical and stochastic features of the electrical load. Subsequently, the framework employs the ATDSCN to learn the cyclical and stochastic features of the electrical load. In addition, the Bayesian algorithm optimizes model hyperparameters for optimal model performance. Experimental results of point and interval load prediction on datasets from the US and Nordic power markets reveal that the ATDSCN model proposed in this paper enhances load prediction accuracy compared with other models. It can provide more reliable predictions for power system operation and dispatch.

Suggested Citation

  • Xu, Huifeng & Hu, Feihu & Liang, Xinhao & Zhao, Guoqing & Abugunmi, Mohammad, 2024. "A framework for electricity load forecasting based on attention mechanism time series depthwise separable convolutional neural network," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224010314
    DOI: 10.1016/j.energy.2024.131258
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224010314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.