IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p777-d1334393.html
   My bibliography  Save this article

Instantaneous Electricity Peak Load Forecasting Using Optimization and Machine Learning

Author

Listed:
  • Mustafa Saglam

    (Energy Institute, Bartlett School Environment, Energy and Resources, University College London, London WC1E 6BT, UK)

  • Xiaojing Lv

    (China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China)

  • Catalina Spataru

    (Energy Institute, Bartlett School Environment, Energy and Resources, University College London, London WC1E 6BT, UK)

  • Omer Ali Karaman

    (Department of Electronic and Automation, Vocational School, Batman University, Batman 72100, Türkiye)

Abstract

Accurate instantaneous electricity peak load prediction is crucial for efficient capacity planning and cost-effective electricity network establishment. This paper aims to enhance the accuracy of instantaneous peak load forecasting by employing models incorporating various optimization and machine learning (ML) methods. This study examines the impact of independent inputs on peak load estimation through various combinations and subsets using multilinear regression (MLR) equations. This research utilizes input data from 1980 to 2020, including import and export data, population, and gross domestic product (GDP), to forecast the instantaneous electricity peak load as the output value. The effectiveness of these techniques is evaluated based on error metrics, including mean absolute error (MAE), mean square error (MSE), mean absolute percentage error (MAPE), root mean square error (RMSE), and R 2 . The comparison extends to popular optimization methods, such as particle swarm optimization (PSO), and the newest method in the field, including dandelion optimizer (DO) and gold rush optimizer (GRO). This comparison is made against conventional machine learning methods, such as support vector regression (SVR) and artificial neural network (ANN), in terms of their prediction accuracy. The findings indicate that the ANN and GRO approaches produce the least statistical errors. Furthermore, the correlation matrix indicates a robust positive linear correlation between GDP and instantaneous peak load. The proposed model demonstrates strong predictive capabilities for estimating peak load, with ANN and GRO performing exceptionally well compared to other methods.

Suggested Citation

  • Mustafa Saglam & Xiaojing Lv & Catalina Spataru & Omer Ali Karaman, 2024. "Instantaneous Electricity Peak Load Forecasting Using Optimization and Machine Learning," Energies, MDPI, vol. 17(4), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:777-:d:1334393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Wenyu & Zhang, Lifang & Wang, Jianzhou & Niu, Xinsong, 2020. "Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting," Applied Energy, Elsevier, vol. 277(C).
    2. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    3. Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
    4. Ismail Shah & Faheem Jan & Sajid Ali & Tahir Mehmood, 2022. "Functional Data Approach for Short-Term Electricity Demand Forecasting," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-14, June.
    5. Prado, Francisco & Minutolo, Marcel C. & Kristjanpoller, Werner, 2020. "Forecasting based on an ensemble Autoregressive Moving Average - Adaptive neuro - Fuzzy inference system – Neural network - Genetic Algorithm Framework," Energy, Elsevier, vol. 197(C).
    6. Jiang, Ping & Li, Ranran & Liu, Ningning & Gao, Yuyang, 2020. "A novel composite electricity demand forecasting framework by data processing and optimized support vector machine," Applied Energy, Elsevier, vol. 260(C).
    7. Wu, Han & Liang, Yan & Heng, Jiani, 2023. "Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting," Applied Energy, Elsevier, vol. 339(C).
    8. Nahid Sultana & S. M. Zakir Hossain & Salma Hamad Almuhaini & Dilek Düştegör, 2022. "Bayesian Optimization Algorithm-Based Statistical and Machine Learning Approaches for Forecasting Short-Term Electricity Demand," Energies, MDPI, vol. 15(9), pages 1-26, May.
    9. Lalitpat Aswanuwath & Warut Pannakkong & Jirachai Buddhakulsomsiri & Jessada Karnjana & Van-Nam Huynh, 2023. "A Hybrid Model of VMD-EMD-FFT, Similar Days Selection Method, Stepwise Regression, and Artificial Neural Network for Daily Electricity Peak Load Forecasting," Energies, MDPI, vol. 16(4), pages 1-24, February.
    10. Pinheiro, Marco G. & Madeira, Sara C. & Francisco, Alexandre P., 2023. "Short-term electricity load forecasting—A systematic approach from system level to secondary substations," Applied Energy, Elsevier, vol. 332(C).
    11. Zahra Shafiei Chafi & Hossein Afrakhte, 2021. "Short-Term Load Forecasting Using Neural Network and Particle Swarm Optimization (PSO) Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-10, April.
    12. Mustafa Saglam & Catalina Spataru & Omer Ali Karaman, 2023. "Forecasting Electricity Demand in Turkey Using Optimization and Machine Learning Algorithms," Energies, MDPI, vol. 16(11), pages 1-23, June.
    13. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    14. Rabeh Abbassi & Salem Saidi & Abdelkader Abbassi & Houssem Jerbi & Mourad Kchaou & Bilal Naji Alhasnawi, 2023. "Accurate Key Parameters Estimation of PEMFCs’ Models Based on Dandelion Optimization Algorithm," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    15. Dong, Yingchao & Zhang, Hongli & Wang, Cong & Zhou, Xiaojun, 2021. "A novel hybrid model based on Bernstein polynomial with mixture of Gaussians for wind power forecasting," Applied Energy, Elsevier, vol. 286(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustafa Saglam & Catalina Spataru & Omer Ali Karaman, 2023. "Forecasting Electricity Demand in Turkey Using Optimization and Machine Learning Algorithms," Energies, MDPI, vol. 16(11), pages 1-23, June.
    2. Du, Pei & Guo, Ju'e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2022. "A novel two-stage seasonal grey model for residential electricity consumption forecasting," Energy, Elsevier, vol. 258(C).
    3. Mustafa Saglam & Catalina Spataru & Omer Ali Karaman, 2022. "Electricity Demand Forecasting with Use of Artificial Intelligence: The Case of Gokceada Island," Energies, MDPI, vol. 15(16), pages 1-22, August.
    4. Jiang, Ping & Liu, Zhenkun & Wang, Jianzhou & Zhang, Lifang, 2021. "Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm," Resources Policy, Elsevier, vol. 73(C).
    5. Zhang, Dongxue & Wang, Shuai & Liang, Yuqiu & Du, Zhiyuan, 2023. "A novel combined model for probabilistic load forecasting based on deep learning and improved optimizer," Energy, Elsevier, vol. 264(C).
    6. Yang, Dongchuan & Guo, Ju-e & Li, Yanzhao & Sun, Shaolong & Wang, Shouyang, 2023. "Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach," Energy, Elsevier, vol. 263(PA).
    7. Du, Pei & Guo, Ju’e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2021. "Multi-step metal prices forecasting based on a data preprocessing method and an optimized extreme learning machine by marine predators algorithm," Resources Policy, Elsevier, vol. 74(C).
    8. Lee, Juyong & Cho, Youngsang, 2022. "National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?," Energy, Elsevier, vol. 239(PD).
    9. Wang, Jianzhou & Gao, Jialu & Wei, Danxiang, 2022. "Electric load prediction based on a novel combined interval forecasting system," Applied Energy, Elsevier, vol. 322(C).
    10. Zhang, Kefei & Cao, Hua & Thé, Jesse & Yu, Hesheng, 2022. "A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms," Applied Energy, Elsevier, vol. 306(PA).
    11. Lalitpat Aswanuwath & Warut Pannakkong & Jirachai Buddhakulsomsiri & Jessada Karnjana & Van-Nam Huynh, 2023. "An Improved Hybrid Approach for Daily Electricity Peak Demand Forecasting during Disrupted Situations: A Case Study of COVID-19 Impact in Thailand," Energies, MDPI, vol. 17(1), pages 1-31, December.
    12. Li, Chen, 2020. "Designing a short-term load forecasting model in the urban smart grid system," Applied Energy, Elsevier, vol. 266(C).
    13. Yuqi Dong & Jianzhou Wang & Xinsong Niu & Bo Zeng, 2023. "Combined water quality forecasting system based on multiobjective optimization and improved data decomposition integration strategy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 260-287, March.
    14. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    15. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    16. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    17. Cheng-Yu Ho & Ke-Sheng Cheng & Chi-Hang Ang, 2023. "Utilizing the Random Forest Method for Short-Term Wind Speed Forecasting in the Coastal Area of Central Taiwan," Energies, MDPI, vol. 16(3), pages 1-18, January.
    18. Namrye Son, 2021. "Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    19. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    20. Wang, Chen & Zhang, Shenghui & Liao, Peng & Fu, Tonglin, 2022. "Wind speed forecasting based on hybrid model with model selection and wind energy conversion," Renewable Energy, Elsevier, vol. 196(C), pages 763-781.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:777-:d:1334393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.