IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6709779.html
   My bibliography  Save this article

Functional Data Approach for Short-Term Electricity Demand Forecasting

Author

Listed:
  • Ismail Shah
  • Faheem Jan
  • Sajid Ali
  • Tahir Mehmood

Abstract

In today’s liberalized electricity markets, modeling and forecasting electricity demand data are highly important for the effective management of the power system. However, electricity demand forecasting is a challenging task due to the specific features it exhibits. These features include the presence of extreme values, spikes or jumps, multiple periodicities, long trend, and bank holiday effect. In addition, the forecasts are required for a complete day as electricity demand is decided a day before the physical delivery. Therefore, this study aimed to investigate the forecasting performance of models based on functional data analysis, a relatively less explored area in energy research. To this end, the demand time series is first treated for the extreme values. The filtered series is then divided into deterministic and stochastic components. The generalized additive modeling technique is used to model the deterministic component, whereas functional autoregressive (FAR), FAR with exogenous variable (FARX), and classical univariate AR models are used to model and forecast the stochastic component. Data from the Nord Pool electricity market are used, and the one-day-ahead out-of-sample forecast obtained for a whole year is evaluated using different forecasting accuracy measures. The results indicate that the functional modeling approach produces superior forecasting results, while FARX outperforms FAR and classical AR models. More specifically, for the NP electricity demand, FARX produces a MAPE value of 2.74, whereas 6.27 and 9.73 values of MAPE are obtained for FAR and AR models, respectively.

Suggested Citation

  • Ismail Shah & Faheem Jan & Sajid Ali & Tahir Mehmood, 2022. "Functional Data Approach for Short-Term Electricity Demand Forecasting," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-14, June.
  • Handle: RePEc:hin:jnlmpe:6709779
    DOI: 10.1155/2022/6709779
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/6709779.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/6709779.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/6709779?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustafa Saglam & Catalina Spataru & Omer Ali Karaman, 2023. "Forecasting Electricity Demand in Turkey Using Optimization and Machine Learning Algorithms," Energies, MDPI, vol. 16(11), pages 1-23, June.
    2. Kate Murray & Andrea Rossi & Diego Carraro & Andrea Visentin, 2023. "On Forecasting Cryptocurrency Prices: A Comparison of Machine Learning, Deep Learning, and Ensembles," Forecasting, MDPI, vol. 5(1), pages 1-14, January.
    3. Juan M. Lujano-Rojas & Rodolfo Dufo-López & Jesús Sergio Artal-Sevil & Eduardo García-Paricio, 2023. "Searching for Promisingly Trained Artificial Neural Networks," Forecasting, MDPI, vol. 5(3), pages 1-26, September.
    4. Mustafa Saglam & Catalina Spataru & Omer Ali Karaman, 2022. "Electricity Demand Forecasting with Use of Artificial Intelligence: The Case of Gokceada Island," Energies, MDPI, vol. 15(16), pages 1-22, August.
    5. Mohamed Trabelsi & Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Shady S. Refaat & Tingwen Huang & Fakhreddine S. Oueslati, 2022. "An Effective Hybrid Symbolic Regression–Deep Multilayer Perceptron Technique for PV Power Forecasting," Energies, MDPI, vol. 15(23), pages 1-14, November.
    6. Sizhe Zhang & Jinqi Liu & Jihong Wang, 2023. "High-Resolution Load Forecasting on Multiple Time Scales Using Long Short-Term Memory and Support Vector Machine," Energies, MDPI, vol. 16(4), pages 1-22, February.
    7. Rubens A. Fernandes & Raimundo C. S. Gomes & Carlos T. Costa & Celso Carvalho & Neilson L. Vilaça & Lennon B. F. Nascimento & Fabricio R. Seppe & Israel G. Torné & Heitor L. N. da Silva, 2023. "A Demand Forecasting Strategy Based on a Retrofit Architecture for Remote Monitoring of Legacy Building Circuits," Sustainability, MDPI, vol. 15(14), pages 1-37, July.
    8. Mustafa Saglam & Xiaojing Lv & Catalina Spataru & Omer Ali Karaman, 2024. "Instantaneous Electricity Peak Load Forecasting Using Optimization and Machine Learning," Energies, MDPI, vol. 17(4), pages 1-22, February.
    9. Hasnain Iftikhar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Day-Ahead Electricity Demand Forecasting Using a Novel Decomposition Combination Method," Energies, MDPI, vol. 16(18), pages 1-22, September.
    10. Manuel Jaramillo & Wilson Pavón & Lisbeth Jaramillo, 2024. "Adaptive Forecasting in Energy Consumption: A Bibliometric Analysis and Review," Data, MDPI, vol. 9(1), pages 1-23, January.
    11. Cheng-Yu Ho & Ke-Sheng Cheng & Chi-Hang Ang, 2023. "Utilizing the Random Forest Method for Short-Term Wind Speed Forecasting in the Coastal Area of Central Taiwan," Energies, MDPI, vol. 16(3), pages 1-18, January.
    12. Leonardo Brain García Fernández & Anna Diva Plasencia Lotufo & Carlos Roberto Minussi, 2023. "Development of a Short-Term Electrical Load Forecasting in Disaggregated Levels Using a Hybrid Modified Fuzzy-ARTMAP Strategy," Energies, MDPI, vol. 16(10), pages 1-30, May.
    13. Sai, Wei & Pan, Zehua & Liu, Siyu & Jiao, Zhenjun & Zhong, Zheng & Miao, Bin & Chan, Siew Hwa, 2023. "Event-driven forecasting of wholesale electricity price and frequency regulation price using machine learning algorithms," Applied Energy, Elsevier, vol. 352(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6709779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.