On Forecasting Cryptocurrency Prices: A Comparison of Machine Learning, Deep Learning, and Ensembles
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Walther, Thomas & Klein, Tony & Bouri, Elie, 2019.
"Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
- Walther, Thomas & Klein, Tony & Bouri, Elie, 2018. "Exogenous Drivers of Bitcoin and Cryptocurrency Volatility – A Mixed Data Sampling Approach to Forecasting," QBS Working Paper Series 2018/02, Queen's University Belfast, Queen's Business School.
- Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021.
"Is It Possible to Forecast the Price of Bitcoin?,"
Forecasting, MDPI, vol. 3(2), pages 1-44, May.
- Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Post-Print halshs-04250269, HAL.
- Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-04250269, HAL.
- Song, Jung Yoon & Chang, Woojin & Song, Jae Wook, 2019. "Cluster analysis on the structure of the cryptocurrency market via Bitcoin–Ethereum filtering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
- Jules Clément Mba & Sutene Mwambetania Mwambi & Edson Pindza, 2022. "A Monte Carlo Approach to Bitcoin Price Prediction with Fractional Ornstein–Uhlenbeck Lévy Process," Forecasting, MDPI, vol. 4(2), pages 1-11, March.
- Lim, Bryan & Arık, Sercan Ö. & Loeff, Nicolas & Pfister, Tomas, 2021. "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1748-1764.
- Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Ismail Shah & Faheem Jan & Sajid Ali & Tahir Mehmood, 2022. "Functional Data Approach for Short-Term Electricity Demand Forecasting," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-14, June.
- Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
- Ahmed M. Khedr & Ifra Arif & Pravija Raj P V & Magdi El‐Bannany & Saadat M. Alhashmi & Meenu Sreedharan, 2021. "Cryptocurrency price prediction using traditional statistical and machine‐learning techniques: A survey," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(1), pages 3-34, January.
- Wu, Shaomin & Akbarov, Artur, 2011. "Support vector regression for warranty claim forecasting," European Journal of Operational Research, Elsevier, vol. 213(1), pages 196-204, August.
- Lahmiri, Salim & Bekiros, Stelios, 2019. "Cryptocurrency forecasting with deep learning chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 35-40.
- Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bouteska, Ahmed & Abedin, Mohammad Zoynul & Hajek, Petr & Yuan, Kunpeng, 2024. "Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods," International Review of Financial Analysis, Elsevier, vol. 92(C).
- Giacomo di Tollo & Joseph Andria & Gianni Filograsso, 2023. "The Predictive Power of Social Media Sentiment: Evidence from Cryptocurrencies and Stock Markets Using NLP and Stochastic ANNs," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
- Jing, Ruixue & Rocha, Luis E.C., 2023.
"A network-based strategy of price correlations for optimal cryptocurrency portfolios,"
Finance Research Letters, Elsevier, vol. 58(PC).
- Ruixue Jing & Luis Enrique Correa Rocha, 2023. "A network-based strategy of price correlations for optimal cryptocurrency portfolios," Papers 2304.02362, arXiv.org.
- Jingyang Wu & Xinyi Zhang & Fangyixuan Huang & Haochen Zhou & Rohtiash Chandra, 2024. "Review of deep learning models for crypto price prediction: implementation and evaluation," Papers 2405.11431, arXiv.org, revised Jun 2024.
- Anoop C V & Neeraj Negi & Anup Aprem, 2023. "Bayesian framework for characterizing cryptocurrency market dynamics, structural dependency, and volatility using potential field," Papers 2308.01013, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Luis Lorenzo & Javier Arroyo, 2023. "Online risk-based portfolio allocation on subsets of crypto assets applying a prototype-based clustering algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-40, December.
- Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
- Orte, Francisco & Mira, José & Sánchez, María Jesús & Solana, Pablo, 2023. "A random forest-based model for crypto asset forecasts in futures markets with out-of-sample prediction," Research in International Business and Finance, Elsevier, vol. 64(C).
- Elie Bouri & Afees A. Salisu & Rangan Gupta, 2023. "The predictive power of Bitcoin prices for the realized volatility of US stock sector returns," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-22, December.
- Bouteska, Ahmed & Abedin, Mohammad Zoynul & Hajek, Petr & Yuan, Kunpeng, 2024. "Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods," International Review of Financial Analysis, Elsevier, vol. 92(C).
- Vassilios Babalos & Elie Bouri & Rangan Gupta, 2024. "Does the Introduction of US Spot Bitcoin ETFs Affect Spot Returns and Volatility of Major Cryptocurrencies?," Working Papers 202416, University of Pretoria, Department of Economics.
- Soria, Jorge & Moya, Jorge & Mohazab, Amin, 2023. "Optimal mining in proof-of-work blockchain protocols," Finance Research Letters, Elsevier, vol. 53(C).
- Siu Hin Tang & Mathieu Rosenbaum & Chao Zhou, 2023. "Forecasting Volatility with Machine Learning and Rough Volatility: Example from the Crypto-Winter," Papers 2311.04727, arXiv.org, revised Feb 2024.
- Husam Rjoub & Tomiwa Sunday Adebayo & Dervis Kirikkaleli, 2023. "Blockchain technology-based FinTech banking sector involvement using adaptive neuro-fuzzy-based K-nearest neighbors algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
- Vidhi Vig & Anmol Kaur, 2022. "Time series forecasting and mathematical modeling of COVID-19 pandemic in India: a developing country struggling to cope up," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2920-2933, December.
- Marcin Wątorek & Jarosław Kwapień & Stanisław Drożdż, 2022. "Multifractal Cross-Correlations of Bitcoin and Ether Trading Characteristics in the Post-COVID-19 Time," Future Internet, MDPI, vol. 14(7), pages 1-15, July.
- Laurens Swinkels, 2023. "Empirical evidence on the ownership and liquidity of real estate tokens," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-29, December.
- Luyao Zhang & Tianyu Wu & Saad Lahrichi & Carlos-Gustavo Salas-Flores & Jiayi Li, 2022. "A Data Science Pipeline for Algorithmic Trading: A Comparative Study of Applications for Finance and Cryptoeconomics," Papers 2206.14932, arXiv.org.
- Kirimhan, Destan, 2023. "Importance of anti-money laundering regulations among prosumers for a cybersecure decentralized finance," Journal of Business Research, Elsevier, vol. 157(C).
- Yaya, OlaOluwa S & Ogbonna, Ephraim A & Furuoka, Fumitaka & Gil-Alana, Luis A., 2019. "A new unit root analysis for testing hysteresis in unemployment," MPRA Paper 96621, University Library of Munich, Germany.
- Wujun Lv & Tao Pang & Xiaobao Xia & Jingzhou Yan, 2023. "Dynamic portfolio choice with uncertain rare-events risk in stock and cryptocurrency markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-28, December.
- Wei Xu & Daning Hu & Karl Reiner Lang & J. Leon Zhao, 2022. "Blockchain and digital finance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-4, December.
- Alessio Brini & Jimmie Lenz, 2024. "A comparison of cryptocurrency volatility-benchmarking new and mature asset classes," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-38, December.
- Pietro Saggese & Esther Segalla & Michael Sigmund & Burkhard Raunig & Felix Zangerl & Bernhard Haslhofer, 2023. "Assessing the Solvency of Virtual Asset Service Providers: Are Current Standards Sufficient?," Papers 2309.16408, arXiv.org, revised Apr 2024.
- Bennett, Donyetta & Mekelburg, Erik & Williams, T.H., 2023. "BeFi meets DeFi: A behavioral finance approach to decentralized finance asset pricing," Research in International Business and Finance, Elsevier, vol. 65(C).
More about this item
Keywords
cryptocurrency prediction; time series forecasting; deep learning; machine learning; ensemble modelling; temporal fusion transformer; recurrent neural networks; bitcoin;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:5:y:2023:i:1:p:10-209:d:1050336. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.