Past, present, and future of the application of machine learning in cryptocurrency research
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ribaf.2022.101799
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Prosper Lamothe-Fernández & David Alaminos & Prosper Lamothe-López & Manuel A. Fernández-Gámez, 2020. "Deep Learning Methods for Modeling Bitcoin Price," Mathematics, MDPI, vol. 8(8), pages 1-13, July.
- Ahmed M. Khedr & Ifra Arif & Pravija Raj P V & Magdi El‐Bannany & Saadat M. Alhashmi & Meenu Sreedharan, 2021. "Cryptocurrency price prediction using traditional statistical and machine‐learning techniques: A survey," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(1), pages 3-34, January.
- Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
- Kamal, Javed Bin & Hassan, M. Kabir, 2022. "Asymmetric connectedness between cryptocurrency environment attention index and green assets," The Journal of Economic Asymmetries, Elsevier, vol. 25(C).
- Lars Steinert & Christian Herff, 2018. "Predicting altcoin returns using social media," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-12, December.
- Hasan, Md. Bokhtiar & Hassan, M. Kabir & Karim, Zulkefly Abdul & Rashid, Md. Mamunur, 2022. "Exploring the hedge and safe haven properties of cryptocurrency in policy uncertainty," Finance Research Letters, Elsevier, vol. 46(PA).
- Yuze Li & Shangrong Jiang & Yunjie Wei & Shouyang Wang, 2021. "Take Bitcoin into your portfolio: a novel ensemble portfolio optimization framework for broad commodity assets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.
- Ahmed, Shamima & Alshater, Muneer M. & Ammari, Anis El & Hammami, Helmi, 2022.
"Artificial intelligence and machine learning in finance: A bibliometric review,"
Research in International Business and Finance, Elsevier, vol. 61(C).
- Shamima Ahmed & Muneer Alshater & Anis El Ammari & Helmi Hammami, 2022. "Artificial intelligence and machine learning in finance: A bibliometric review," Post-Print hal-03697290, HAL.
- Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
- Elizabeth S. Vieira & José A. N. F. Gomes, 2009. "A comparison of Scopus and Web of Science for a typical university," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(2), pages 587-600, November.
- Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
- Pavel Ciaian & Miroslava Rajcaniova & d’Artis Kancs, 2016.
"The economics of BitCoin price formation,"
Applied Economics, Taylor & Francis Journals, vol. 48(19), pages 1799-1815, April.
- Pavel Ciaian & Miroslava Rajcaniova & d'Artis Kancs, 2014. "The Economics of BitCoin Price Formation," EERI Research Paper Series EERI RP 2014/08, Economics and Econometrics Research Institute (EERI), Brussels.
- Pavel Ciaian & Miroslava Rajcaniova & d'Artis Kancs, 2014. "The Economics of BitCoin Price Formation," Papers 1405.4498, arXiv.org.
- Atsalakis, George S. & Atsalaki, Ioanna G. & Pasiouras, Fotios & Zopounidis, Constantin, 2019.
"Bitcoin price forecasting with neuro-fuzzy techniques,"
European Journal of Operational Research, Elsevier, vol. 276(2), pages 770-780.
- George S. Atsalakis & Ioanna G. Atsalaki & Fotios Pasiouras & Constantin Zopounidis, 2019. "Bitcoin price forecasting with neuro-fuzzy techniques," Post-Print hal-02879928, HAL.
- Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CARF F-Series CARF-F-441, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Philippe Mongeon & Adèle Paul-Hus, 2016. "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 213-228, January.
- Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CIRJE F-Series CIRJE-F-1078, CIRJE, Faculty of Economics, University of Tokyo.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," OSF Preprints yc6e2, Center for Open Science.
- Luis Lorenzo & Javier Arroyo, 2022. "Analysis of the cryptocurrency market using different prototype-based clustering techniques," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-46, December.
- Urquhart, Andrew, 2017. "Price clustering in Bitcoin," Economics Letters, Elsevier, vol. 159(C), pages 145-148.
- Jia, Boxiang & Goodell, John W. & Shen, Dehua, 2022. "Momentum or reversal: Which is the appropriate third factor for cryptocurrencies?," Finance Research Letters, Elsevier, vol. 45(C).
- Alhenawi, Yasser & Hassan, M. Kabir & Hasan, Rashedul, 2022. "Evolution of research in finance over the last two decades – A topographical view," Research in International Business and Finance, Elsevier, vol. 59(C).
- Sun, Xiaolei & Liu, Mingxi & Sima, Zeqian, 2020. "A novel cryptocurrency price trend forecasting model based on LightGBM," Finance Research Letters, Elsevier, vol. 32(C).
- Schnaubelt, Matthias, 2022. "Deep reinforcement learning for the optimal placement of cryptocurrency limit orders," European Journal of Operational Research, Elsevier, vol. 296(3), pages 993-1006.
- Jan-Christian Gerlach & Guilherme Demos & Didier Sornette, 2018. "Dissection of Bitcoin's Multiscale Bubble History from January 2012 to February 2018," Papers 1804.06261, arXiv.org, revised May 2019.
- Yue, Yao & Li, Xuerong & Zhang, Dingxuan & Wang, Shouyang, 2021. "How cryptocurrency affects economy? A network analysis using bibliometric methods," International Review of Financial Analysis, Elsevier, vol. 77(C).
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," MetaArXiv haf2v, Center for Open Science.
- Bouri, Elie & Gupta, Rangan & Tiwari, Aviral Kumar & Roubaud, David, 2017.
"Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions,"
Finance Research Letters, Elsevier, vol. 23(C), pages 87-95.
- Elie Bouri & Rangan Gupta & Aviral Kumar Tiwari & David Roubaud, 2016. "Does Bitcoin Hedge Global Uncertainty? Evidence from Wavelet-Based Quantile-in-Quantile Regressions," Working Papers 201690, University of Pretoria, Department of Economics.
- Elie Bouri & Rangan Gupta & Aviral Kumar Tiwari & David Roubaud, 2017. "Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions," Post-Print hal-02008552, HAL.
- Song, Jung Yoon & Chang, Woojin & Song, Jae Wook, 2019. "Cluster analysis on the structure of the cryptocurrency market via Bitcoin–Ethereum filtering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
- Bouri, Elie & Gupta, Rangan, 2021.
"Predicting Bitcoin returns: Comparing the roles of newspaper- and internet search-based measures of uncertainty,"
Finance Research Letters, Elsevier, vol. 38(C).
- Elie Bouri & Rangan Gupta, 2019. "Predicting Bitcoin Returns: Comparing the Roles of Newspaper- and Internet Search-Based Measures of Uncertainty," Working Papers 201955, University of Pretoria, Department of Economics.
- Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017.
"Can volume predict Bitcoin returns and volatility? A quantiles-based approach,"
Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
- Mehmet Balcilar & Elie Bouri & Rangan Gupta & David Roubaud, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Post-Print hal-02008551, HAL.
- Jana, Rabin K. & Ghosh, Indranil & Wallin, Martin W., 2022. "Taming energy and electronic waste generation in bitcoin mining: Insights from Facebook prophet and deep neural network," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
- ANGHEL, Dan-Gabriel, 2021. "A reality check on trading rule performance in the cryptocurrency market: Machine learning vs. technical analysis," Finance Research Letters, Elsevier, vol. 39(C).
- Aggarwal, Divya & Chandrasekaran, Shabana & Annamalai, Balamurugan, 2020. "A complete empirical ensemble mode decomposition and support vector machine-based approach to predict Bitcoin prices," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
- Goodell, John W. & Goutte, Stephane, 2021. "Diversifying equity with cryptocurrencies during COVID-19," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Saeed Nosratabadi & Amirhosein Mosavi & Puhong Duan & Pedram Ghamisi & Ferdinand Filip & Shahab S. Band & Uwe Reuter & Joao Gama & Amir H. Gandomi, 2020. "Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods," Mathematics, MDPI, vol. 8(10), pages 1-25, October.
- Lahmiri, Salim & Bekiros, Stelios, 2020. "Intelligent forecasting with machine learning trading systems in chaotic intraday Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
- Papadamou, Stephanos & Kyriazis, Nikolaos A. & Tzeremes, Panayiotis & Corbet, Shaen, 2021. "Herding behaviour and price convergence clubs in cryptocurrencies during bull and bear markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
- Sergio Luis Náñez Alonso & Javier Jorge-Vázquez & Miguel Ángel Echarte Fernández & Ricardo Francisco Reier Forradellas, 2021. "Cryptocurrency Mining from an Economic and Environmental Perspective. Analysis of the Most and Least Sustainable Countries," Energies, MDPI, vol. 14(14), pages 1-22, July.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," Thesis Commons auyvc, Center for Open Science.
- Goodell, John W. & Goutte, Stephane, 2021.
"Co-movement of COVID-19 and Bitcoin: Evidence from wavelet coherence analysis,"
Finance Research Letters, Elsevier, vol. 38(C).
- John W Goodell & Stéphane Goutte, 2020. "Co-movement of COVID-19 and Bitcoin: Evidence from wavelet coherence analysis," Working Papers halshs-02613277, HAL.
- Qin, Meng & Su, Chi-Wei & Tao, Ran, 2021. "BitCoin: A new basket for eggs?," Economic Modelling, Elsevier, vol. 94(C), pages 896-907.
- Su, Chi-Wei & Qin, Meng & Tao, Ran & Umar, Muhammad, 2020. "Financial implications of fourth industrial revolution: Can bitcoin improve prospects of energy investment?," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
- Suhwan Ji & Jongmin Kim & Hyeonseung Im, 2019. "A Comparative Study of Bitcoin Price Prediction Using Deep Learning," Mathematics, MDPI, vol. 7(10), pages 1-20, September.
- Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CARF F-Series CARF-F-430, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Lahmiri, Salim & Bekiros, Stelios, 2019. "Cryptocurrency forecasting with deep learning chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 35-40.
- Erdinc Akyildirim & Ahmet Goncu & Ahmet Sensoy, 2021. "Prediction of cryptocurrency returns using machine learning," Annals of Operations Research, Springer, vol. 297(1), pages 3-36, February.
- Chen, Chaomei & Chen, Yue & Horowitz, Mark & Hou, Haiyan & Liu, Zeyuan & Pellegrino, Donald, 2009. "Towards an explanatory and computational theory of scientific discovery," Journal of Informetrics, Elsevier, vol. 3(3), pages 191-209.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," LawArXiv kczj5, Center for Open Science.
- Nicola Uras & Lodovica Marchesi & Michele Marchesi & Roberto Tonelli, 2020. "Forecasting Bitcoin closing price series using linear regression and neural networks models," Papers 2001.01127, arXiv.org.
- Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating cryptocurrency prices using machine learning," Papers 1805.08550, arXiv.org, revised Nov 2018.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," EdArXiv 5dwrt, Center for Open Science.
- Sean Foley & Jonathan R Karlsen & Tālis J Putniņš, 2019. "Sex, Drugs, and Bitcoin: How Much Illegal Activity Is Financed through Cryptocurrencies?," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 1798-1853.
- Aysan, Ahmet Faruk & Demir, Ender & Gozgor, Giray & Lau, Chi Keung Marco, 2019. "Effects of the geopolitical risks on Bitcoin returns and volatility," Research in International Business and Finance, Elsevier, vol. 47(C), pages 511-518.
- Lucey, Brian M. & Vigne, Samuel A. & Yarovaya, Larisa & Wang, Yizhi, 2022. "The cryptocurrency uncertainty index," Finance Research Letters, Elsevier, vol. 45(C).
- Chowdhury, Reaz & Rahman, M. Arifur & Rahman, M. Sohel & Mahdy, M.R.C., 2020. "An approach to predict and forecast the price of constituents and index of cryptocurrency using machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
- Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating Cryptocurrency Prices Using Machine Learning," Complexity, Hindawi, vol. 2018, pages 1-16, November.
- Li, Zhenghui & Chen, Liming & Dong, Hao, 2021. "What are bitcoin market reactions to its-related events?," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 1-10.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," SocArXiv 9vdwf, Center for Open Science.
- Kurbucz, Marcell Tamás, 2019. "Predicting the price of Bitcoin by the most frequent edges of its transaction network," Economics Letters, Elsevier, vol. 184(C).
- Akhtaruzzaman, Md & Boubaker, Sabri & Nguyen, Duc Khuong & Rahman, Molla Ramizur, 2022. "Systemic risk-sharing framework of cryptocurrencies in the COVID–19 crisis," Finance Research Letters, Elsevier, vol. 47(PB).
- Bouri, Elie & Molnár, Peter & Azzi, Georges & Roubaud, David & Hagfors, Lars Ivar, 2017.
"On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?,"
Finance Research Letters, Elsevier, vol. 20(C), pages 192-198.
- Elie Bouri & Peter Molnár & Georges Azzi & David Roubaud & Lars Ivar Hagfors, 2017. "On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?," Post-Print hal-02000697, HAL.
- D'aniel Kondor & M'arton P'osfai & Istv'an Csabai & G'abor Vattay, 2013. "Do the rich get richer? An empirical analysis of the BitCoin transaction network," Papers 1308.3892, arXiv.org, revised Mar 2014.
- Ting-Hsuan Chen & Mu-Yen Chen & Guan-Ting Du, 2021. "The Determinants of Bitcoin’s Price: Utilization of GARCH and Machine Learning Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 267-280, January.
- Guesmi, Khaled & Saadi, Samir & Abid, Ilyes & Ftiti, Zied, 2019. "Portfolio diversification with virtual currency: Evidence from bitcoin," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 431-437.
- Dastgir, Shabbir & Demir, Ender & Downing, Gareth & Gozgor, Giray & Lau, Chi Keung Marco, 2019. "The causal relationship between Bitcoin attention and Bitcoin returns: Evidence from the Copula-based Granger causality test," Finance Research Letters, Elsevier, vol. 28(C), pages 160-164.
- Dániel Kondor & Márton Pósfai & István Csabai & Gábor Vattay, 2014. "Do the Rich Get Richer? An Empirical Analysis of the Bitcoin Transaction Network," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-10, February.
- Francisco Javier García-Corral & José Antonio Cordero-García & Jaime de Pablo-Valenciano & Juan Uribe-Toril, 2022. "A bibliometric review of cryptocurrencies: how have they grown?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
- Gidea, Marian & Goldsmith, Daniel & Katz, Yuri & Roldan, Pablo & Shmalo, Yonah, 2020. "Topological recognition of critical transitions in time series of cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
- Min Xu & Xingtong Chen & Gang Kou, 2019. "A systematic review of blockchain," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-14, December.
- Levulytė, Laura & Šapkauskienė, Alfreda, 2021. "Cryptocurrency in context of fiat money functions," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 44-54.
- Nakano, Masafumi & Takahashi, Akihiko & Takahashi, Soichiro, 2018. "Bitcoin technical trading with artificial neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 587-609.
- Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
- Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
- Manavi, Seyed Alireza & Jafari, Gholamreza & Rouhani, Shahin & Ausloos, Marcel, 2020. "Demythifying the belief in cryptocurrencies decentralized aspects. A study of cryptocurrencies time cross-correlations with common currencies, commodities and financial indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bouteska, Ahmed & Abedin, Mohammad Zoynul & Hajek, Petr & Yuan, Kunpeng, 2024. "Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods," International Review of Financial Analysis, Elsevier, vol. 92(C).
- Orte, Francisco & Mira, José & Sánchez, María Jesús & Solana, Pablo, 2023. "A random forest-based model for crypto asset forecasts in futures markets with out-of-sample prediction," Research in International Business and Finance, Elsevier, vol. 64(C).
- Riahi, Rabeb & Bennajma, Amel & Jahmane, Abderrahmane & Hammami, Helmi, 2024. "Investing in cryptocurrency before and during the COVID-19 crisis: Hedge, diversifier or safe haven?," Research in International Business and Finance, Elsevier, vol. 67(PB).
- Lin, Sin-Jin & Zeng, Jhih-Hong & Chang, Te-Min & Hsu, Ming-Fu, 2024. "Linguistic complexity consideration for advanced risk decision making and handling," Research in International Business and Finance, Elsevier, vol. 69(C).
- Ko, Hyungjin & Son, Bumho & Lee, Jaewook, 2024. "Portfolio insurance strategy in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 67(PA).
- Liu, Yujun & Li, Zhongfei & Nekhili, Ramzi & Sultan, Jahangir, 2023. "Forecasting cryptocurrency returns with machine learning," Research in International Business and Finance, Elsevier, vol. 64(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
- Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
- Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
- Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
- Yue, Yao & Li, Xuerong & Zhang, Dingxuan & Wang, Shouyang, 2021. "How cryptocurrency affects economy? A network analysis using bibliometric methods," International Review of Financial Analysis, Elsevier, vol. 77(C).
- Rico-Peña, Juan Jesús & Arguedas-Sanz, Raquel & López-Martin, Carmen, 2023. "Models used to characterise blockchain features. A systematic literature review and bibliometric analysis," Technovation, Elsevier, vol. 123(C).
- Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
- Bouteska, Ahmed & Abedin, Mohammad Zoynul & Hajek, Petr & Yuan, Kunpeng, 2024. "Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods," International Review of Financial Analysis, Elsevier, vol. 92(C).
- Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
- Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021.
"Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis,"
Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
- Aurelio F. Bariviera & Ignasi Merediz-Sol`a, 2020. "Where do we stand in cryptocurrencies economic research? A survey based on hybrid analysis," Papers 2003.09723, arXiv.org.
- Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021.
"Is It Possible to Forecast the Price of Bitcoin?,"
Forecasting, MDPI, vol. 3(2), pages 1-44, May.
- Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-04250269, HAL.
- Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Post-Print halshs-04250269, HAL.
- Tapia, Sebastian & Kristjanpoller, Werner, 2022. "Framework based on multiplicative error and residual analysis to forecast bitcoin intraday-volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
- Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
- Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
- Dunbar, Kwamie & Owusu-Amoako, Johnson, 2023. "Predictability of crypto returns: The impact of trading behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
- ORĂȘTEAN Ramona & MĂRGINEAN Silvia Cristina & SAVA Raluca, 2019. "Bitcoin In The Scientific Literature – A Bibliometric Study," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(3), pages 160-174, December.
- Hajek, Petr & Hikkerova, Lubica & Sahut, Jean-Michel, 2023. "How well do investor sentiment and ensemble learning predict Bitcoin prices?," Research in International Business and Finance, Elsevier, vol. 64(C).
- Li, Xiao & Wu, Ruoxi & Wang, Chen, 2024. "Impacts of bitcoin on monetary system: Is China's bitcoin ban necessary?," Research in International Business and Finance, Elsevier, vol. 69(C).
- Nagula, Pavan Kumar & Alexakis, Christos, 2022. "A new hybrid machine learning model for predicting the bitcoin (BTC-USD) price," Journal of Behavioral and Experimental Finance, Elsevier, vol. 36(C).
More about this item
Keywords
Cryptocurrency; Machine learning; Blockchain; Bibliometric analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:63:y:2022:i:c:s0275531922001854. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.