IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02879928.html

Bitcoin price forecasting with neuro-fuzzy techniques

Author

Listed:
  • George S. Atsalakis

    (TUC - Technical University of Crete [Chania])

  • Ioanna G. Atsalaki

    (TUC - Technical University of Crete [Chania])

  • Fotios Pasiouras

    (Montpellier Business School)

  • Constantin Zopounidis

    (TUC - Technical University of Crete [Chania], Audencia Business School)

Abstract

Cryptocurrencies, with Bitcoin being the most notable example, have attracted considerable attention in recent years, and they have experienced large fluctuations in their price. While a few studies employ conventional statistical and econometric approaches to reveal the driving factors of Bitcoin's prices, research on the development of forecasting models to be used as decision support tools in investment strategies is scarce. This study proposes a computational intelligence technique that uses a hybrid Neuro-Fuzzy controller, namely PATSOS, to forecast the direction in the change of the daily price of Bitcoin. The proposed methodology outperforms two other computational intelligence models, the first being developed with a simpler neuro-fuzzy approach, and the second being developed with artificial neural networks. Furthermore, the investment returns achieved by a trading simulation, based on the signals of the proposed model, are 71.21% higher than the ones achieved through a naive buy-and-hold strategy. The performance of the PATSOS system is robust to the use of other cryptocurrencies.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • George S. Atsalakis & Ioanna G. Atsalaki & Fotios Pasiouras & Constantin Zopounidis, 2019. "Bitcoin price forecasting with neuro-fuzzy techniques," Post-Print hal-02879928, HAL.
  • Handle: RePEc:hal:journl:hal-02879928
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02879928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.