Forecasting cryptocurrency returns with machine learning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ribaf.2023.101905
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Schilling, Linda & Uhlig, Harald, 2019.
"Some simple bitcoin economics,"
Journal of Monetary Economics, Elsevier, vol. 106(C), pages 16-26.
- Uhlig, Harald & Schilling, Linda, 2018. "Some simple Bitcoin Economics," CEPR Discussion Papers 12831, C.E.P.R. Discussion Papers.
- Linda Schilling & Harald Uhlig, 2018. "Some Simple Bitcoin Economics," NBER Working Papers 24483, National Bureau of Economic Research, Inc.
- Orte, Francisco & Mira, José & Sánchez, María Jesús & Solana, Pablo, 2023. "A random forest-based model for crypto asset forecasts in futures markets with out-of-sample prediction," Research in International Business and Finance, Elsevier, vol. 64(C).
- Michael Sockin & Wei Xiong, 2020. "A Model of Cryptocurrencies," NBER Working Papers 26816, National Bureau of Economic Research, Inc.
- Bouri, Elie & Gupta, Rangan & Lahiani, Amine & Shahbaz, Muhammad, 2018.
"Testing for asymmetric nonlinear short- and long-run relationships between bitcoin, aggregate commodity and gold prices,"
Resources Policy, Elsevier, vol. 57(C), pages 224-235.
- Elie Bouri & Rangan Gupta & Amine Lahiani & Muhammad Shahbaz, 2017. "Testing for Asymmetric Nonlinear Short- and Long-Run Relationships between Bitcoin, Aggregate Commodity and Gold Prices," Working Papers 201760, University of Pretoria, Department of Economics.
- Elie Bouri & Rangan Gupta & Amine Lahiani & Muhammad Shahbaz, 2018. "Testing for asymmetric nonlinear short- and long-run relationships between bitcoin, aggregate commodity and gold prices," Post-Print hal-03533197, HAL.
- Yechen Zhu & David Dickinson & Jianjun Li, 2017. "Erratum to: Analysis on the influence factors of Bitcoin’s price based on VEC model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-1, December.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
- Yechen Zhu & David Dickinson & Jianjun Li, 2017. "Analysis on the influence factors of Bitcoin’s price based on VEC model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-13, December.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Wang, Yaqi & Wang, Chunfeng & Sensoy, Ahmet & Yao, Shouyu & Cheng, Feiyang, 2022. "Can investors’ informed trading predict cryptocurrency returns? Evidence from machine learning," Research in International Business and Finance, Elsevier, vol. 62(C).
- Zaremba, Adam & Bilgin, Mehmet Huseyin & Long, Huaigang & Mercik, Aleksander & Szczygielski, Jan J., 2021. "Up or down? Short-term reversal, momentum, and liquidity effects in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 78(C).
- Sun, Xiaolei & Liu, Mingxi & Sima, Zeqian, 2020. "A novel cryptocurrency price trend forecasting model based on LightGBM," Finance Research Letters, Elsevier, vol. 32(C).
- Jamal Bouoiyour & Refk Selmi, 2015.
"What Does Bitcoin Look Like?,"
Annals of Economics and Finance, Society for AEF, vol. 16(2), pages 449-492, November.
- Jamal Bouoiyour & Refk Selmi, 2015. "What Does Bitcoin Look Like?," Post-Print hal-01879683, HAL.
- Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
- Katz, Michael L & Shapiro, Carl, 1985. "Network Externalities, Competition, and Compatibility," American Economic Review, American Economic Association, vol. 75(3), pages 424-440, June.
- Jiang, Kunliang & Zeng, Linhui & Song, Jiashan & Liu, Yimeng, 2022. "Forecasting Value-at-Risk of cryptocurrencies using the time-varying mixture-accelerating generalized autoregressive score model," Research in International Business and Finance, Elsevier, vol. 61(C).
- Liu, Mingxi & Li, Guowen & Li, Jianping & Zhu, Xiaoqian & Yao, Yinhong, 2021. "Forecasting the price of Bitcoin using deep learning," Finance Research Letters, Elsevier, vol. 40(C).
- Lahmiri, Salim & Bekiros, Stelios, 2019. "Cryptocurrency forecasting with deep learning chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 35-40.
- Erdinc Akyildirim & Ahmet Goncu & Ahmet Sensoy, 2021. "Prediction of cryptocurrency returns using machine learning," Annals of Operations Research, Springer, vol. 297(1), pages 3-36, February.
- Chowdhury, Reaz & Rahman, M. Arifur & Rahman, M. Sohel & Mahdy, M.R.C., 2020. "An approach to predict and forecast the price of constituents and index of cryptocurrency using machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
- Bouri, Elie & Christou, Christina & Gupta, Rangan, 2022.
"Forecasting returns of major cryptocurrencies: Evidence from regime-switching factor models,"
Finance Research Letters, Elsevier, vol. 49(C).
- Elie Bouri & Christina Christou & Rangan Gupta, 2022. "Forecasting Returns of Major Cryptocurrencies: Evidence from Regime-Switching Factor Models," Working Papers 202213, University of Pretoria, Department of Economics.
- Yukun Liu & Aleh Tsyvinski, 2021. "Risks and Returns of Cryptocurrency," The Review of Financial Studies, Society for Financial Studies, vol. 34(6), pages 2689-2727.
- Yae, James & Tian, George Zhe, 2022. "Out-of-sample forecasting of cryptocurrency returns: A comprehensive comparison of predictors and algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
- Yousaf, Imran & Nekhili, Ramzi & Gubareva, Mariya, 2022. "Linkages between DeFi assets and conventional currencies: Evidence from the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 81(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vecchi, Edoardo & Berra, Gabriele & Albrecht, Steffen & Gagliardini, Patrick & Horenko, Illia, 2023. "Entropic approximate learning for financial decision-making in the small data regime," Research in International Business and Finance, Elsevier, vol. 65(C).
- Riahi, Rabeb & Bennajma, Amel & Jahmane, Abderrahmane & Hammami, Helmi, 2024. "Investing in cryptocurrency before and during the COVID-19 crisis: Hedge, diversifier or safe haven?," Research in International Business and Finance, Elsevier, vol. 67(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
- Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
- Yae, James & Tian, George Zhe, 2022. "Out-of-sample forecasting of cryptocurrency returns: A comprehensive comparison of predictors and algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
- Bouteska, Ahmed & Abedin, Mohammad Zoynul & Hajek, Petr & Yuan, Kunpeng, 2024. "Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods," International Review of Financial Analysis, Elsevier, vol. 92(C).
- Burcu Kapar & Jose Olmo, 2021. "Analysis of Bitcoin prices using market and sentiment variables," The World Economy, Wiley Blackwell, vol. 44(1), pages 45-63, January.
- Nakagawa, Kei & Sakemoto, Ryuta, 2022. "Cryptocurrency network factors and gold," Finance Research Letters, Elsevier, vol. 46(PB).
- Zhang, Dingxuan & Sun, Yuying & Duan, Hongbo & Hong, Yongmiao & Wang, Shouyang, 2023. "Speculation or currency? Multi-scale analysis of cryptocurrencies—The case of Bitcoin," International Review of Financial Analysis, Elsevier, vol. 88(C).
- Zhang, Wei & Li, Yi & Xiong, Xiong & Wang, Pengfei, 2021. "Downside risk and the cross-section of cryptocurrency returns," Journal of Banking & Finance, Elsevier, vol. 133(C).
- Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
- Julián A. Parra & Carlos Arango - Joaquín Bernal & José E. Gómez - Javier Gómez & Carlos León - Clara Machado & Daniel Osorio - Daniel Rojas & Nicolás Suárez - Eduardo Yanquen, 2019.
"Criptoactivos: análisis y revisión de literatura,"
Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, issue 92, pages 1-37, November.
- Julián A. Parra & Carlos Arango & Joaquín Bernal & José E. Gómez & Javier Gómez & Carlos León & Clara Machado & Daniel Osorio & Daniel Rojas & Nicolás Suárez & Eduardo Yanquen, 2019. "Criptoactivos: análisis y revisión de literatura," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 92, pages 1-37, November.
- Fieberg, Christian & Liedtke, Gerrit & Zaremba, Adam, 2024. "Cryptocurrency anomalies and economic constraints," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Tan, Xilong & Tao, Yubo, 2023. "Trend-based forecast of cryptocurrency returns," Economic Modelling, Elsevier, vol. 124(C).
- Nicolás Magner & Nicolás Hardy, 2022. "Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle," Mathematics, MDPI, vol. 10(13), pages 1-27, July.
- Cakici, Nusret & Shahzad, Syed Jawad Hussain & Będowska-Sójka, Barbara & Zaremba, Adam, 2024. "Machine learning and the cross-section of cryptocurrency returns," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Rodrigo Hakim das Neves, 2020. "Bitcoin pricing: impact of attractiveness variables," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-18, December.
- Xun Zhang & Fengbin Lu & Rui Tao & Shouyang Wang, 2021. "The time-varying causal relationship between the Bitcoin market and internet attention," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-19, December.
- Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
- Serdar Neslihanoglu, 2021. "Linearity extensions of the market model: a case of the top 10 cryptocurrency prices during the pre-COVID-19 and COVID-19 periods," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
- Yaya, OlaOluwa S. & Lukman, Adewale F. & Vo, Xuan Vinh, 2022.
"Persistence and volatility spillovers of bitcoin price to gold and silver prices,"
Resources Policy, Elsevier, vol. 79(C).
- Yaya, OlaOluwa A & Lukman, Adewale F. & Vo, Xuan Vinh, 2022. "Persistence and Volatility Spillovers of Bitcoin price to Gold and Silver prices," MPRA Paper 114521, University Library of Munich, Germany.
More about this item
Keywords
Cryptocurrency; Machine learning; eXtreme Gradient Boostine; SHapley Additive exPlanations;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
- G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:64:y:2023:i:c:s0275531923000314. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.