IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2018cf1078.html
   My bibliography  Save this paper

Bitcoin technical trading with artificial neural network

Author

Listed:
  • Masafumi Nakano

    (Graduate School of Economics, The University of Tokyo)

  • Akihiko Takahashi

    (Faculty of Economics, The University of Tokyo)

  • Soichiro Takahashi

    (Graduate School of Economics, The University of Tokyo)

Abstract

This paper explores Bitcoin trading based on artificial neural networks for the return prediction. In particular, our deep learning method successfully discovers trading signals through a seven layered neural network structure for given input data of technical indicators, which are calculated by the past time-series of Bitcoin returns over every 15 minutes. Under feasible settings of execution costs, the numerical experiments demonstrate that our approach significantly improves the performance of a buy-and-hold strategy. Especially, our model performs well for a challenging period from December 2017 to January 2018, during which Bitcoin suffers from substantial minus returns.

Suggested Citation

  • Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2018. "Bitcoin technical trading with artificial neural network," CIRJE F-Series CIRJE-F-1078, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2018cf1078
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2018/2018cf1078.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2017. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs," Papers 1710.07030, arXiv.org, revised Oct 2017.
    2. repec:eee:finlet:v:16:y:2016:i:c:p:85-92 is not listed on IDEAS
    3. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2017. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs," CIRJE F-Series CIRJE-F-1069, CIRJE, Faculty of Economics, University of Tokyo.
    4. Marie Briere & Kim Oosterlinck & Ariane Szafarz, 2015. "Virtual Currency, Tangible Return: Portfolio Diversification with Bitcoins," Post-Print CEB, ULB -- Universite Libre de Bruxelles, vol. 16(6), pages 365-373.
    5. repec:spr:infotm:v:18:y:2017:i:4:d:10.1007_s10799-016-0264-6 is not listed on IDEAS
    6. Masafumi Nakano & Akihiko Takahashi & Muhammad Soichiro Takahashi, 2017. "Creating Investment Scheme with State Space Modeling," CIRJE F-Series CIRJE-F-1038, CIRJE, Faculty of Economics, University of Tokyo.
    7. Huck, Nicolas, 2010. "Pairs trading and outranking: The multi-step-ahead forecasting case," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1702-1716, December.
    8. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2017. "Creating Investment Scheme with State Space Modeling," CARF F-Series cf406, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    9. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2017. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs," CARF F-Series CARF-F-423, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2018cf1078. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office). General contact details of provider: http://edirc.repec.org/data/ritokjp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.