IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v9y2023i1d10.1186_s40854-022-00438-2.html
   My bibliography  Save this article

Online risk-based portfolio allocation on subsets of crypto assets applying a prototype-based clustering algorithm

Author

Listed:
  • Luis Lorenzo

    (Complutense University)

  • Javier Arroyo

    (Complutense University)

Abstract

Mean-variance portfolio optimization models are sensitive to uncertainty in risk-return estimates, which may result in poor out-of-sample performance. In particular, the estimates may suffer when the number of assets considered is high and the length of the return time series is not sufficiently long. This is precisely the case in the cryptocurrency market, where there are hundreds of crypto assets that have been traded for a few years. We propose enhancing the mean-variance (MV) model with a pre-selection stage that uses a prototype-based clustering algorithm to reduce the number of crypto assets considered at each investment period. In the pre-selection stage, we run a prototype-based clustering algorithm where the assets are described by variables representing the profit-risk duality. The prototypes of the clustering partition are automatically examined and the one that best suits our risk-aversion preference is selected. We then run the MV portfolio optimization with the crypto assets of the selected cluster. The proposed approach is tested for a period of 17 months in the whole cryptocurrency market and two selections of the cryptocurrencies with the higher market capitalization (175 and 250 cryptos). We compare the results against three methods applied to the whole market: classic MV, risk parity, and hierarchical risk parity methods. We also compare our results with those from investing in the market index CCI30. The simulation results generally favor our proposal in terms of profit and risk-profit financial indicators. This result reaffirms the convenience of using machine learning methods to guide financial investments in complex and highly-volatile environments such as the cryptocurrency market.

Suggested Citation

  • Luis Lorenzo & Javier Arroyo, 2023. "Online risk-based portfolio allocation on subsets of crypto assets applying a prototype-based clustering algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-40, December.
  • Handle: RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-022-00438-2
    DOI: 10.1186/s40854-022-00438-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-022-00438-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-022-00438-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. G. Bonanno & F. Lillo & R. N. Mantegna, 2001. "High-frequency cross-correlation in a set of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 96-104.
    2. Čuljak, Maria & Tomić, Bojan & Žiković, Saša, 2022. "Benefits of sectoral cryptocurrency portfolio optimization," Research in International Business and Finance, Elsevier, vol. 60(C).
    3. Kapetanios, George & Shin, Yongcheol & Snell, Andy, 2003. "Testing for a unit root in the nonlinear STAR framework," Journal of Econometrics, Elsevier, vol. 112(2), pages 359-379, February.
    4. Meihua Wang & Cheng Li & Honggang Xue & Fengmin Xu, 2014. "A New Portfolio Rebalancing Model with Transaction Costs," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, April.
    5. Giovanni De Luca & Paola Zuccolotto, 2017. "Dynamic tail dependence clustering of financial time series," Statistical Papers, Springer, vol. 58(3), pages 641-657, September.
    6. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    7. Harry Markowitz, 1952. "The Utility of Wealth," Journal of Political Economy, University of Chicago Press, vol. 60(2), pages 151-151.
    8. Roncalli, Thierry, 2013. "Introduction to Risk Parity and Budgeting," MPRA Paper 47679, University Library of Munich, Germany.
    9. La Gubu & Dedi Rosadi & Abdurakhman, 2020. "Robust Mean–Variance Portfolio Selection Using Cluster Analysis: A Comparison between Kamila and Weighted K-Mean Clustering," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 10(10), pages 1169-1186.
    10. Pafka, Szilárd & Kondor, Imre, 2003. "Noisy covariance matrices and portfolio optimization II," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 487-494.
    11. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2018. "Collective behavior of cryptocurrency price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 499-509.
    12. Otranto, Edoardo, 2008. "Clustering heteroskedastic time series by model-based procedures," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4685-4698, June.
    13. Domenico Piccolo, 1990. "A Distance Measure For Classifying Arima Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(2), pages 153-164, March.
    14. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    15. La Gubu & Dedi Rosadi & Abdurakhman, 2020. "Robust Mean–Variance Portfolio Selection Using Cluster Analysis: A Comparison between Kamila and Weighted K-Mean Clustering," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 10(10), pages 1169-1186, October.
    16. Song, Jung Yoon & Chang, Woojin & Song, Jae Wook, 2019. "Cluster analysis on the structure of the cryptocurrency market via Bitcoin–Ethereum filtering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    17. Liu, Weiyi, 2019. "Portfolio diversification across cryptocurrencies," Finance Research Letters, Elsevier, vol. 29(C), pages 200-205.
    18. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    19. repec:dau:papers:123456789/4688 is not listed on IDEAS
    20. Luis Lorenzo & Javier Arroyo, 2022. "Analysis of the cryptocurrency market using different prototype-based clustering techniques," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-46, December.
    21. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 363-371, March.
    22. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," Journal of Financial Economics, Elsevier, vol. 135(2), pages 293-319.
    23. Borysov, Petro & Hannig, Jan & Marron, J.S., 2014. "Asymptotics of hierarchical clustering for growing dimension," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 465-479.
    24. D’Urso, Pierpaolo & Cappelli, Carmela & Di Lallo, Dario & Massari, Riccardo, 2013. "Clustering of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2114-2129.
    25. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    26. Roy Cerqueti & L. de Giovanni & P. d'Urso & M. Giacalone & R. Mattera, 2022. "Weighted score-driven fuzzy clustering of time series with a financial application," Post-Print hal-03789065, HAL.
    27. Min Xu & Xingtong Chen & Gang Kou, 2019. "A systematic review of blockchain," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-14, December.
    28. Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    29. Liang Zhou & Lin Zhang & Ying Zhao & Ruoshu Zheng & Kaiwen Song, 2021. "A scientometric review of blockchain research," Information Systems and e-Business Management, Springer, vol. 19(3), pages 757-787, September.
    30. Alla Petukhina & Simon Trimborn & Wolfgang Karl Härdle & Hermann Elendner, 2021. "Investing with cryptocurrencies – evaluating their potential for portfolio allocation strategies," Quantitative Finance, Taylor & Francis Journals, vol. 21(11), pages 1825-1853, November.
    31. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    32. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    33. J. Leon Zhao & Shaokun Fan & Jiaqi Yan, 2016. "Overview of business innovations and research opportunities in blockchain and introduction to the special issue," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-7, December.
    34. Roy Cerqueti & M. Giacalone & R. Mattera, 2021. "Model-based fuzzy time series clustering of conditional higher moments," Post-Print hal-03789115, HAL.
    35. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    36. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Lorenzo & Javier Arroyo, 2022. "Analysis of the cryptocurrency market using different prototype-based clustering techniques," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-46, December.
    2. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    3. Bennett, Donyetta & Mekelburg, Erik & Williams, T.H., 2023. "BeFi meets DeFi: A behavioral finance approach to decentralized finance asset pricing," Research in International Business and Finance, Elsevier, vol. 65(C).
    4. Virginie Terraza & Aslı Boru İpek & Mohammad Mahdi Rounaghi, 2024. "The nexus between the volatility of Bitcoin, gold, and American stock markets during the COVID-19 pandemic: evidence from VAR-DCC-EGARCH and ANN models," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-34, December.
    5. Haji Suleman Ali & Feiyan Jia & Zhiyuan Lou & Jingui Xie, 2023. "Effect of blockchain technology initiatives on firms’ market value," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-35, December.
    6. Antonio Briola & Tomaso Aste, 2022. "Dependency structures in cryptocurrency market from high to low frequency," Papers 2206.03386, arXiv.org, revised Dec 2022.
    7. Yu Song & Bo Chen & Xin-Yi Wang, 2023. "Cryptocurrency technology revolution: are Bitcoin prices and terrorist attacks related?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-20, December.
    8. Husam Rjoub & Tomiwa Sunday Adebayo & Dervis Kirikkaleli, 2023. "Blockchain technology-based FinTech banking sector involvement using adaptive neuro-fuzzy-based K-nearest neighbors algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    9. Laurens Swinkels, 2023. "Empirical evidence on the ownership and liquidity of real estate tokens," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-29, December.
    10. Eom, Cheoljun, 2017. "Two-faced property of a market factor in asset pricing and diversification effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 190-199.
    11. Wujun Lv & Tao Pang & Xiaobao Xia & Jingzhou Yan, 2023. "Dynamic portfolio choice with uncertain rare-events risk in stock and cryptocurrency markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-28, December.
    12. Wei Xu & Daning Hu & Karl Reiner Lang & J. Leon Zhao, 2022. "Blockchain and digital finance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-4, December.
    13. de Carvalho, Pablo Jose Campos & Gupta, Aparna, 2018. "A network approach to unravel asset price comovement using minimal dependence structure," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 119-132.
    14. Walid Mensi & Mariya Gubareva & Hee-Un Ko & Xuan Vinh Vo & Sang Hoon Kang, 2023. "Tail spillover effects between cryptocurrencies and uncertainty in the gold, oil, and stock markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-27, December.
    15. Riccardo Blasis & Luca Galati & Alexander Webb & Robert I. Webb, 2023. "Intelligent design: stablecoins (in)stability and collateral during market turbulence," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    16. Waqas Hanif & Hee-Un Ko & Linh Pham & Sang Hoon Kang, 2023. "Dynamic connectedness and network in the high moments of cryptocurrency, stock, and commodity markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-40, December.
    17. Danilo Bazzanella & Andrea Gangemi, 2023. "Bitcoin: a new proof-of-work system with reduced variance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-14, December.
    18. Nie, Chun-Xiao, 2022. "Analysis of critical events in the correlation dynamics of cryptocurrency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    19. Yi-Hsiang Lu & Ching-Chiang Yeh & Yu-Mei Kuo, 2024. "Exploring the critical factors affecting the adoption of blockchain: Taiwan’s banking industry," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-25, December.
    20. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-022-00438-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.