IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v10y2024i1d10.1186_s40854-023-00590-3.html
   My bibliography  Save this article

Optimal portfolio selection with volatility information for a high frequency rebalancing algorithm

Author

Listed:
  • Mahmut Bağcı

    (Marmara University)

  • Pınar Kaya Soylu

    (Marmara University)

Abstract

We propose a high-frequency rebalancing algorithm (HFRA) and compare its performance with periodic rebalancing (PR) and threshold rebalancing (TR) strategies. PR refers to the process of adjusting the relative weight of assets within portfolios at regular time intervals, whereas TR is a process of setting allocation limits for portfolios and rebalancing when portfolios exceed a specific percentage of deviation from the target allocation. The HFRA is constructed as an integration of pairs trading and a threshold-based rebalancing strategy, and the profitability of the HFRA is examined to determine the optimal portfolio size. The HFRA is applied to a dataset of real price series from cryptocurrency exchange markets across various trends and volatility regimes. Using cointegrated price data, it is shown that increasing the number of assets in a portfolio supports the profitability of the HFRA in an up-trend and reduces the potential loss of the HFRA in a down-trend in a high-volatility environment. For low-volatility regimes, although increasing portfolio size marginally enhances the HFRA’s profitability, the profits of portfolios of varied sizes do not significantly differ. It is demonstrated that when volatility is relatively high and the trend is upward, the HFRA can yield a substantial return via portfolios of large sizes. Moreover, the profitability of the HFRA is compared with that of the PR and TR strategies for long-term application. The HFRA is more profitable than the PR and TR strategies. This achievement of the HFRA is also validated statistically using the Fisher–Pitman permutation test.

Suggested Citation

  • Mahmut Bağcı & Pınar Kaya Soylu, 2024. "Optimal portfolio selection with volatility information for a high frequency rebalancing algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-28, December.
  • Handle: RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-023-00590-3
    DOI: 10.1186/s40854-023-00590-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-023-00590-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-023-00590-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Omar Rachedi, 2018. "Portfolio Rebalancing And Asset Pricing With Heterogeneous Inattention," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(2), pages 699-726, May.
    2. Atsalakis, George S. & Atsalaki, Ioanna G. & Pasiouras, Fotios & Zopounidis, Constantin, 2019. "Bitcoin price forecasting with neuro-fuzzy techniques," European Journal of Operational Research, Elsevier, vol. 276(2), pages 770-780.
    3. Michael D. Mattei, 2018. "Enhanced Portfolio Performance Using a Momentum Approach to Annual Rebalancing," IJFS, MDPI, vol. 6(1), pages 1-9, February.
    4. Meihua Wang & Cheng Li & Honggang Xue & Fengmin Xu, 2014. "A New Portfolio Rebalancing Model with Transaction Costs," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, April.
    5. Gil Cohen, 2021. "Optimizing Algorithmic Strategies for Trading Bitcoin," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 639-654, February.
    6. Feldman Konrad & Treleaven Philip, 1994. "Intelligent systems in finance," Applied Mathematical Finance, Taylor & Francis Journals, vol. 1(2), pages 195-207.
    7. Tim Leung & Hung Nguyen, 2019. "Constructing cointegrated cryptocurrency portfolios for statistical arbitrage," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 36(4), pages 581-599, September.
    8. Zihao Zhang & Bryan Lim & Stefan Zohren, 2021. "Deep Learning for Market by Order Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 28(1), pages 79-95, January.
    9. Sujit R. Das & Mukul Goyal, 2015. "Computing optimal rebalance frequency for log-optimal portfolios in linear time," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1191-1204, July.
    10. Ślepaczuk Robert & Zenkova Maryna, 2018. "Robustness of Support Vector Machines in Algorithmic Trading on Cryptocurrency Market," Central European Economic Journal, Sciendo, vol. 5(52), pages 186-205, January.
    11. Grobys, Klaus & Junttila, Juha & Kolari, James W. & Sapkota, Niranjan, 2021. "On the stability of stablecoins," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 207-223.
    12. repec:eme:sef000:sef-08-2018-0264 is not listed on IDEAS
    13. Gianna Figá-Talamanca & Sergio Focardi & Marco Patacca, 2021. "Common dynamic factors for cryptocurrencies and multiple pair-trading statistical arbitrages," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 863-882, December.
    14. Alain P. Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Clara Vega, 2014. "Rise of the Machines: Algorithmic Trading in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 69(5), pages 2045-2084, October.
    15. Elie Bouri & Luis A. Gil‐Alana & Rangan Gupta & David Roubaud, 2019. "Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 412-426, January.
    16. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    17. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    18. Hossein Rad & Rand Kwong Yew Low & Robert Faff, 2016. "The profitability of pairs trading strategies: distance, cointegration and copula methods," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1541-1558, October.
    19. Zihao Zhang & Bryan Lim & Stefan Zohren, 2021. "Deep Learning for Market by Order Data," Papers 2102.08811, arXiv.org, revised Jul 2021.
    20. repec:bde:journl:y:2018:i:9:d:aa:n:26 is not listed on IDEAS
    21. Meihua Wang & Cheng Li & Honggang Xue & Fengmin Xu, 2014. "A New Portfolio Rebalancing Model with Transaction Costs," Journal of Applied Mathematics, John Wiley & Sons, vol. 2014(1).
    22. Masood Tadi & Irina Kortchmeski, 2021. "Evaluation of Dynamic Cointegration-Based Pairs Trading Strategy in the Cryptocurrency Market," Papers 2109.10662, arXiv.org.
    23. Lin, Tsai-Yu & Chen, Cathy W.S. & Syu, Fong-Yi, 2021. "Multi-asset pair-trading strategy: A statistical learning approach," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    24. Masood Tadi & Irina Kortchemski, 2021. "Evaluation of dynamic cointegration-based pairs trading strategy in the cryptocurrency market," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 38(5), pages 1054-1075, July.
    25. DeMiguel, Victor & Plyakha, Yuliya & Uppal, Raman & Vilkov, Grigory, 2013. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(6), pages 1813-1845, December.
    26. Huck, Nicolas, 2009. "Pairs selection and outranking: An application to the S&P 100 index," European Journal of Operational Research, Elsevier, vol. 196(2), pages 819-825, July.
    27. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    28. Christopher Krauss, 2017. "Statistical Arbitrage Pairs Trading Strategies: Review And Outlook," Journal of Economic Surveys, Wiley Blackwell, vol. 31(2), pages 513-545, April.
    29. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501, Decembrie.
    30. Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    31. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2013. "Portfolio rebalancing with an investment horizon and transaction costs," Omega, Elsevier, vol. 41(2), pages 406-420.
    32. Archana Jain & Chinmay Jain & Christine X. Jiang, 2021. "Active Trading in ETFs: The Role of High-Frequency Algorithmic Trading," Financial Analysts Journal, Taylor & Francis Journals, vol. 77(2), pages 66-82, April.
    33. Yu, Jing-Rung & Chiou, W. Paul & Hung, Cing-Hung & Dong, Wen-Kuei & Chang, Yi-Hsuan, 2022. "Dynamic rebalancing portfolio models with analyses of investor sentiment," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 1-13.
    34. Dirk G. Baur & Thomas Dimpfl, 2021. "The volatility of Bitcoin and its role as a medium of exchange and a store of value," Empirical Economics, Springer, vol. 61(5), pages 2663-2683, November.
    35. Sujit R. Das & Dmitri Kaznachey & Mukul Goyal, 2014. "Computing optimal rebalance frequency for log-optimal portfolios," Quantitative Finance, Taylor & Francis Journals, vol. 14(8), pages 1489-1502, January.
    36. Marco Avellaneda & Jeong-Hyun Lee, 2010. "Statistical arbitrage in the US equities market," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 761-782.
    37. �lvaro Cartea & Sebastian Jaimungal, 2013. "Modelling Asset Prices for Algorithmic and High-Frequency Trading," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(6), pages 512-547, December.
    38. José Luis Romero Ugarte, 2018. "Distributed ledger technology (DLT): introduction," Economic Bulletin, Banco de España, issue DEC.
    39. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmut Bağcı & Pınar Kaya Soylu & Selçuk Kıran, 2024. "The Symmetric and Asymmetric Algorithmic Trading Strategies for the Stablecoins," Computational Economics, Springer;Society for Computational Economics, vol. 64(5), pages 2663-2684, November.
    2. Law, K.F. & Li, W.K. & Yu, Philip L.H., 2018. "A single-stage approach for cointegration-based pairs trading," Finance Research Letters, Elsevier, vol. 26(C), pages 177-184.
    3. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    4. Tian-Shyr Dai & Yi-Jen Luo & Hao-Han Chang & Chu-Lan Kao & Kuan-Lun Wang & Liang-Chih Liu, 2024. "Asymptotic analyses for trend-stationary pairs trading strategy in high-frequency trading," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1391-1411, November.
    5. Masood Tadi & Jiří Witzany, 2025. "Copula-based trading of cointegrated cryptocurrency Pairs," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-32, December.
    6. Yen-Wu Ti & Tian-Shyr Dai & Kuan-Lun Wang & Hao-Han Chang & You-Jia Sun, 2024. "Improving Cointegration-Based Pairs Trading Strategy with Asymptotic Analyses and Convergence Rate Filters," Computational Economics, Springer;Society for Computational Economics, vol. 64(5), pages 2717-2745, November.
    7. Fernando Caneo & Werner Kristjanpoller, 2021. "Improving statistical arbitrage investment strategy: Evidence from Latin American stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4424-4440, July.
    8. Han, Chulwoo & He, Zhaodong & Toh, Alenson Jun Wei, 2023. "Pairs trading via unsupervised learning," European Journal of Operational Research, Elsevier, vol. 307(2), pages 929-947.
    9. Ziping Zhao & Rui Zhou & Zhongju Wang & Daniel P. Palomar, 2018. "Optimal Portfolio Design for Statistical Arbitrage in Finance," Papers 1803.02974, arXiv.org.
    10. Riccardo Blasis & Luca Galati & Alexander Webb & Robert I. Webb, 2023. "Intelligent design: stablecoins (in)stability and collateral during market turbulence," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    11. Khaled Mokni & Ghassen El Montasser & Ahdi Noomen Ajmi & Elie Bouri, 2024. "On the efficiency and its drivers in the cryptocurrency market: the case of Bitcoin and Ethereum," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-25, December.
    12. Matthew Clegg & Christopher Krauss, 2018. "Pairs trading with partial cointegration," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 121-138, January.
    13. Gianna Figá-Talamanca & Sergio Focardi & Marco Patacca, 2021. "Common dynamic factors for cryptocurrencies and multiple pair-trading statistical arbitrages," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 863-882, December.
    14. Ahmed BenSaïda, 2023. "The linkage between Bitcoin and foreign exchanges in developed and emerging markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-27, December.
    15. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    16. Knoll, Julian & Stübinger, Johannes & Grottke, Michael, 2017. "Exploiting social media with higher-order Factorization Machines: Statistical arbitrage on high-frequency data of the S&P 500," FAU Discussion Papers in Economics 13/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    17. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    18. Luis Lorenzo & Javier Arroyo, 2023. "Online risk-based portfolio allocation on subsets of crypto assets applying a prototype-based clustering algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-40, December.
    19. Kasper Johansson & Thomas Schmelzer & Stephen Boyd, 2024. "Finding Moving-Band Statistical Arbitrages via Convex-Concave Optimization," Papers 2402.08108, arXiv.org.
    20. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-023-00590-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.