IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2308.01013.html

Bayesian framework for characterizing cryptocurrency market dynamics, structural dependency, and volatility using potential field

Author

Listed:
  • Anoop C V
  • Neeraj Negi
  • Anup Aprem

Abstract

Identifying the structural dependence between the cryptocurrencies and predicting market trend are fundamental for effective portfolio management in cryptocurrency trading. In this paper, we present a unified Bayesian framework based on potential field theory and Gaussian Process to characterize the structural dependency of various cryptocurrencies, using historic price information. The following are our significant contributions: (i) Proposed a novel model for cryptocurrency price movements as a trajectory of a dynamical system governed by a time-varying non-linear potential field. (ii) Validated the existence of the non-linear potential function in cryptocurrency market through Lyapunov stability analysis. (iii) Developed a Bayesian framework for inferring the non-linear potential function from observed cryptocurrency prices. (iv) Proposed that attractors and repellers inferred from the potential field are reliable cryptocurrency market indicators, surpassing existing attributes, such as, mean, open price or close price of an observation window, in the literature. (v) Analysis of cryptocurrency market during various Bitcoin crash durations from April 2017 to November 2021, shows that attractors captured the market trend, volatility, and correlation. In addition, attractors aids explainability and visualization. (vi) The structural dependence inferred by the proposed approach was found to be consistent with results obtained using the popular wavelet coherence approach. (vii) The proposed market indicators (attractors and repellers) can be used to improve the prediction performance of state-of-art deep learning price prediction models. As, an example, we show improvement in Litecoin price prediction up to a horizon of 12 days.

Suggested Citation

  • Anoop C V & Neeraj Negi & Anup Aprem, 2023. "Bayesian framework for characterizing cryptocurrency market dynamics, structural dependency, and volatility using potential field," Papers 2308.01013, arXiv.org.
  • Handle: RePEc:arx:papers:2308.01013
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2308.01013
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fruehwirt, Wolfgang & Hochfilzer, Leonhard & Weydemann, Leonard & Roberts, Stephen, 2021. "Cumulation, crash, coherency: A cryptocurrency bubble wavelet analysis," Finance Research Letters, Elsevier, vol. 40(C).
    2. Ze Shen & Qing Wan & David J. Leatham, 2021. "Bitcoin Return Volatility Forecasting: A Comparative Study between GARCH and RNN," JRFM, MDPI, vol. 14(7), pages 1-18, July.
    3. Qiao, Xingzhi & Zhu, Huiming & Hau, Liya, 2020. "Time-frequency co-movement of cryptocurrency return and volatility: Evidence from wavelet coherence analysis," International Review of Financial Analysis, Elsevier, vol. 71(C).
    4. Erdinc Akyildirim & Ahmet Goncu & Ahmet Sensoy, 2021. "Prediction of cryptocurrency returns using machine learning," Annals of Operations Research, Springer, vol. 297(1), pages 3-36, February.
    5. Kate Murray & Andrea Rossi & Diego Carraro & Andrea Visentin, 2023. "On Forecasting Cryptocurrency Prices: A Comparison of Machine Learning, Deep Learning, and Ensembles," Forecasting, MDPI, vol. 5(1), pages 1-14, January.
    6. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soria, Jorge & Moya, Jorge & Mohazab, Amin, 2023. "Optimal mining in proof-of-work blockchain protocols," Finance Research Letters, Elsevier, vol. 53(C).
    2. Alvarez-Ramirez, Jose & Espinosa-Paredes, Gilberto & Vernon-Carter, E. Jaime, 2025. "Causal wavelet analysis of the Bitcoin price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).
    3. Rubaiyat Ahsan Bhuiyan & Afzol Husain & Changyong Zhang, 2023. "Diversification evidence of bitcoin and gold from wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-36, December.
    4. Omer Burak Akgun & Emrah Gulay, 2025. "Dynamics in Realized Volatility Forecasting: Evaluating GARCH Models and Deep Learning Algorithms Across Parameter Variations," Computational Economics, Springer;Society for Computational Economics, vol. 65(6), pages 3971-4013, June.
    5. Bouteska, Ahmed & Abedin, Mohammad Zoynul & Hajek, Petr & Yuan, Kunpeng, 2024. "Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods," International Review of Financial Analysis, Elsevier, vol. 92(C).
    6. Díaz, Antonio & Esparcia, Carlos & Huélamo, Diego, 2023. "Stablecoins as a tool to mitigate the downside risk of cryptocurrency portfolios," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    7. Shen, Dehua & Wu, Yize, 2025. "The role of Guru investor in Bitcoin: Evidence from Kolmogorov-Arnold Networks," Research in International Business and Finance, Elsevier, vol. 75(C).
    8. Dante Miller & Jong-Min Kim, 2021. "Univariate and Multivariate Machine Learning Forecasting Models on the Price Returns of Cryptocurrencies," JRFM, MDPI, vol. 14(10), pages 1-10, October.
    9. Hau, Liya & Zhu, Huiming & Shahbaz, Muhammad & Sun, Wuqin, 2021. "Does transaction activity predict Bitcoin returns? Evidence from quantile-on-quantile analysis," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    10. Su, Zedongfang & Zhang, Xinyu & Wei, Yunjie & Wang, Shouyang, 2025. "Exploring the Nexus of virtual and real-world assets: Price co-movement and risk spillovers in the metaverse era," International Review of Financial Analysis, Elsevier, vol. 105(C).
    11. Ouyang, Zisheng & Zhou, Xuewei & Wang, Gang-jin & Liu, Shuwen & Lu, Min, 2024. "Multilayer networks in the frequency domain: Measuring volatility connectedness among Chinese financial institutions," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 909-928.
    12. Praveen Puram & Soumya Roy & Deepak Srivastav & Anand Gurumurthy, 2023. "Understanding the effect of contextual factors and decision making on team performance in Twenty20 cricket: an interpretable machine learning approach," Annals of Operations Research, Springer, vol. 325(1), pages 261-288, June.
    13. Migliavacca, Milena & Goodell, John W. & Paltrinieri, Andrea, 2023. "A bibliometric review of portfolio diversification literature," International Review of Financial Analysis, Elsevier, vol. 90(C).
    14. Maneejuk, Paravee & Kaewtathip, Nuttaphong & Jaipong, Peemmawat & Yamaka, Woraphon, 2022. "The transition of the global financial markets' connectedness during the COVID-19 pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    15. Giacomo di Tollo & Joseph Andria & Gianni Filograsso, 2023. "The Predictive Power of Social Media Sentiment: Evidence from Cryptocurrencies and Stock Markets Using NLP and Stochastic ANNs," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    16. Jiang, Yonghong & Wu, Lanxin & Tian, Gengyu & Nie, He, 2021. "Do cryptocurrencies hedge against EPU and the equity market volatility during COVID-19? – New evidence from quantile coherency analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
    17. Bouteska, Ahmed & Sharif, Taimur & Isskandarani, Layal & Abedin, Mohammad Zoynul, 2025. "Market efficiency and its determinants: Macro-level dynamics and micro-level characteristics of cryptocurrencies," International Review of Economics & Finance, Elsevier, vol. 98(C).
    18. Siu Hin Tang & Mathieu Rosenbaum & Chao Zhou, 2023. "Forecasting Volatility with Machine Learning and Rough Volatility: Example from the Crypto-Winter," Papers 2311.04727, arXiv.org, revised Feb 2024.
    19. Pastwa, Anna M. & Shrestha, Prabal & Thewissen, James & Torsin, Wouter, 2021. "Unpacking the black box of ICO white papers: a topic modeling approach," LIDAM Discussion Papers LFIN 2021018, Université catholique de Louvain, Louvain Finance (LFIN).
    20. Yichen Luo & Yebo Feng & Jiahua Xu & Paolo Tasca & Yang Liu, 2025. "LLM-Powered Multi-Agent System for Automated Crypto Portfolio Management," Papers 2501.00826, arXiv.org, revised Jan 2025.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2308.01013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.