IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v253y2019ic38.html
   My bibliography  Save this article

Inverted Brayton Cycle for waste heat recovery in reciprocating internal combustion engines

Author

Listed:
  • Di Battista, D.
  • Fatigati, F.
  • Carapellucci, R.
  • Cipollone, R.

Abstract

Energy recovery in reciprocating internal combustion engines is one of the most investigated topics for reducing fuel consumption and carbon dioxide emissions in the on-the-road transportation sector. An exhaust gas recovery opportunity is represented by a power unit with a so-called inverted Brayton cycle (IBC). The gas is used as the working fluid, which expands inside a turbine when it falls below atmospheric pressure; after being cooled by an external source, it is re-compressed to the atmospheric value. The useful work is the difference between the one produced by the turbine and that absorbed by the compressor. In this study, a thermodynamic assessment of the opportunity to apply an IBC-based power unit to a turbocharged diesel engine was conducted, and the most important parameters affecting the range of possible recovery (turbine and compressor efficiencies, pressure drops) were evaluated, and the pressure ratio was optimized. A conventional bottomed layout shows a recovery of approximately 1.5% of the engine’s mechanical power when a homologation heavy duty procedure is performed. An improved integration, in which the IBC turbine is placed upstream of the turbocharger one, makes it possible to partially recover the energy losses related to the turbocharger control device, which leads to an average recoverable power of approximately 2% of the engine brake power. Concerns about possible water condensation in the exhaust have also been thoroughly investigated, and they can be managed in temperate weather.

Suggested Citation

  • Di Battista, D. & Fatigati, F. & Carapellucci, R. & Cipollone, R., 2019. "Inverted Brayton Cycle for waste heat recovery in reciprocating internal combustion engines," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:253:y:2019:i:c:38
    DOI: 10.1016/j.apenergy.2019.113565
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919312395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Rongchao & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Zhao, Yanting & Chen, Zhen, 2016. "Parametric study of a turbocompound diesel engine based on an analytical model," Energy, Elsevier, vol. 115(P1), pages 435-445.
    2. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    3. Ben-Ran Fu, 2016. "A Flow Rate Control Approach on Off-Design Analysis of an Organic Rankine Cycle System," Energies, MDPI, vol. 9(9), pages 1-9, September.
    4. Goodarzi, Mohsen & Kiasat, Mohsen & Khalilidehkordi, Ehsan, 2014. "Performance analysis of a modified regenerative Brayton and inverse Brayton cycle," Energy, Elsevier, vol. 72(C), pages 35-43.
    5. Kaneko, Kenichi & Ohtani, Kiyoshi & Tsujikawa, Yoshiharu & Fujii, Shoichi, 2004. "Utilization of the cryogenic exergy of LNG by a mirror gas-turbine," Applied Energy, Elsevier, vol. 79(4), pages 355-369, December.
    6. Bianchi, M. & De Pascale, A., 2011. "Bottoming cycles for electric energy generation: Parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources," Applied Energy, Elsevier, vol. 88(5), pages 1500-1509, May.
    7. Nicolas Stanzel & Thomas Streule & Markus Preißinger & Dieter Brüggemann, 2016. "Comparison of Cooling System Designs for an Exhaust Heat Recovery System Using an Organic Rankine Cycle on a Heavy Duty Truck," Energies, MDPI, vol. 9(11), pages 1-16, November.
    8. Rajesh Ravi & Senthilkumar Pachamuthu, 2018. "Design and Development of Innovative Protracted-Finned Counter Flow Heat Exchanger (PFCHE) for an Engine WHR and Its Impact on Exhaust Emissions," Energies, MDPI, vol. 11(10), pages 1-19, October.
    9. Feneley, Adam J. & Pesiridis, Apostolos & Andwari, Amin Mahmoudzadeh, 2017. "Variable Geometry Turbocharger Technologies for Exhaust Energy Recovery and Boosting‐A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 959-975.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Tianyu & Shu, Gequn & Tian, Hua & Zhao, Tingting & Zhang, Hongfei & Zhang, Zhao, 2020. "Performance evaluation of metal-foam baffle exhaust heat exchanger for waste heat recovery," Applied Energy, Elsevier, vol. 266(C).
    2. Catapano, F. & Frazzica, A. & Freni, A. & Manzan, M. & Micheli, D. & Palomba, V. & Sementa, P. & Vaglieco, B.M., 2022. "Development and experimental testing of an integrated prototype based on Stirling, ORC and a latent thermal energy storage system for waste heat recovery in naval application," Applied Energy, Elsevier, vol. 311(C).
    3. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.
    4. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Xiaoyu Liu & Chong Zhao & Hao Guo & Zhongcheng Wang, 2022. "Performance Analysis of Ship Exhaust Gas Temperature Differential Power Generation," Energies, MDPI, vol. 15(11), pages 1-17, May.
    6. Davide Di Battista & Roberto Cipollone, 2023. "Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation," Energies, MDPI, vol. 16(8), pages 1-28, April.
    7. Matsui, Kohei & Lin, Jie & Thu, Kyaw & Miyazaki, Takahiko, 2022. "On the performance improvement of an inverted Brayton Cycle using a regenerative heat and mass exchanger," Energy, Elsevier, vol. 249(C).
    8. Liu, Bohan & Lu, Mingjian & Shui, Bo & Sun, Yuwei & Wei, Wei, 2022. "Thermal-hydraulic performance analysis of printed circuit heat exchanger precooler in the Brayton cycle for supercritical CO2 waste heat recovery," Applied Energy, Elsevier, vol. 305(C).
    9. Abrosimov, Kirill & Baccioli, Andrea & Bischi, Aldo, 2020. "Extensive techno-economic assessment of combined inverted Brayton – Organic Rankine cycle for high-temperature waste heat recovery," Energy, Elsevier, vol. 211(C).
    10. Wang, Rui & Wang, Xuan & Shu, Gequn & Tian, Hua & Cai, Jinwen & Bian, Xingyan & Li, Xinyu & Qin, Zheng & Shi, Lingfeng, 2022. "Comparison of different load-following control strategies of a sCO2 Brayton cycle under full load range," Energy, Elsevier, vol. 246(C).
    11. Rijpkema, Jelmer & Erlandsson, Olof & Andersson, Sven B. & Munch, Karin, 2022. "Exhaust waste heat recovery from a heavy-duty truck engine: Experiments and simulations," Energy, Elsevier, vol. 238(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Menaz Ahamed & Apostolos Pesyridis & Jabraeil Ahbabi Saray & Amin Mahmoudzadeh Andwari & Ayat Gharehghani & Srithar Rajoo, 2023. "Comparative Assessment of sCO2 Cycles, Optimal ORC, and Thermoelectric Generators for Exhaust Waste Heat Recovery Applications from Heavy-Duty Diesel Engines," Energies, MDPI, vol. 16(11), pages 1-21, May.
    2. Davide Di Battista & Roberto Cipollone, 2023. "Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation," Energies, MDPI, vol. 16(8), pages 1-28, April.
    3. Chagnon-Lessard, Noémie & Copeland, Colin & Mathieu-Potvin, François & Gosselin, Louis, 2020. "Maximizing specific work output extracted from engine exhaust with novel inverted Brayton cycles over a large range of operating conditions," Energy, Elsevier, vol. 191(C).
    4. Van Vang Le & Lan Huong Nguyen, 2019. "Design And Fabrication Of Distillation Equipment Of Fresh Water From The Seawater By The Use Of The Waste Heat From Diesel Engines," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(2), pages 79-83, March.
    5. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    6. Xuan Phuong Nguyen, 2019. "The Bus Transportation Issue And People Satisfaction With Public Transport In Ho Chi Minh City ," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 10-16, January.
    7. repec:zib:zjmerd:4jmerd2018-116-121 is not listed on IDEAS
    8. Hou, Mingyu & Wu, Zhanghua & Yu, Guoyao & Hu, Jianying & Luo, Ercang, 2018. "A thermoacoustic Stirling electrical generator for cold exergy recovery of liquefied nature gas," Applied Energy, Elsevier, vol. 226(C), pages 389-396.
    9. Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & Ramos, Alberto, 2011. "Available power generation cycles to be coupled with the liquid natural gas (LNG) vaporization process in a Spanish LNG terminal," Applied Energy, Elsevier, vol. 88(7), pages 2382-2390, July.
    10. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    11. Szczygiel, Ireneusz & Bulinski, Zbigniew, 2018. "Overview of the liquid natural gas (LNG) regasification technologies with the special focus on the Prof. Szargut's impact," Energy, Elsevier, vol. 165(PB), pages 999-1008.
    12. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    13. Chen, Wei-Hsin & Wang, Chi-Ming & Lee, Da-Sheng & Kwon, Eilhann E. & Ashokkumar, Veeramuthu & Culaba, Alvin B., 2022. "Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins," Applied Energy, Elsevier, vol. 314(C).
    14. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    15. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    16. Xue, Xiaodi & Guo, Cong & Du, Xiaoze & Yang, Lijun & Yang, Yongping, 2015. "Thermodynamic analysis and optimization of a two-stage organic Rankine cycle for liquefied natural gas cryogenic exergy recovery," Energy, Elsevier, vol. 83(C), pages 778-787.
    17. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong & Wu, Yonghui, 2018. "Characterization of two-stage turbine system under steady and pulsating flow conditions," Energy, Elsevier, vol. 148(C), pages 407-423.
    18. Hossein Nami & Amjad Anvari-Moghaddam & Ahmad Arabkoohsar & Amir Reza Razmi, 2020. "4E Analyses of a Hybrid Waste-Driven CHP–ORC Plant with Flue Gas Condensation," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    19. Van Hai Nguyen & Duc Thiep Cao & Thi Hien Do, 2019. "Research And Calculation Of The Biogas Fuel Supply System For A Small Marine Diesel Engine," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 64-70, January.
    20. Li, Lifu & Zhang, Zhongbo, 2019. "Investigation on steam direct injection in a natural gas engine for fuel savings," Energy, Elsevier, vol. 183(C), pages 958-970.
    21. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:253:y:2019:i:c:38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.