IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v235y2021ics0360544221015723.html
   My bibliography  Save this article

Day-ahead wind-thermal unit commitment considering historical virtual wind power data

Author

Listed:
  • Dong, Jizhe
  • Han, Shunjie
  • Shao, Xiangxin
  • Tang, Like
  • Chen, Renhui
  • Wu, Longfei
  • Zheng, Cunlong
  • Li, Zonghao
  • Li, Haolin

Abstract

The uncertainty in wind power affects the generation scheduling (unit commitment) of coal-dominated power systems. A reasonable spinning reserve is required to handle this uncertainty. In this study, a method that considers the unique local wind regime into the calculation of spinning reserve requirements and makes the unit commitment more local-adaptive is presented. First, a virtual wind power transfer matrix which displays the probabilities of wind power transferring from one value to another by using the historical wind speed data is formulated. Second, the spinning reserve requirements of the wind-thermal power system are calculated according to the virtual wind power transfer matrix. Finally, the day-ahead unit commitment is conducted based on the spinning reserve calculation. The main advantage of using historical virtual wind power data, instead of historical wind speed data, is the acquisition of real wind power transfer probabilities, which avoids the distortion caused by the nonlinear conversion between wind power and wind speed. Application and comparison studies to demonstrate the effectiveness and cost benefits are performed on two systems. Sensitivity analyses of different parameters used in the method are also investigated.

Suggested Citation

  • Dong, Jizhe & Han, Shunjie & Shao, Xiangxin & Tang, Like & Chen, Renhui & Wu, Longfei & Zheng, Cunlong & Li, Zonghao & Li, Haolin, 2021. "Day-ahead wind-thermal unit commitment considering historical virtual wind power data," Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221015723
    DOI: 10.1016/j.energy.2021.121324
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221015723
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Zhile & Li, Kang & Guo, Yuanjun & Feng, Shengzhong & Niu, Qun & Xue, Yusheng & Foley, Aoife, 2019. "A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles," Energy, Elsevier, vol. 170(C), pages 889-905.
    2. Shahbazitabar, Maryam & Abdi, Hamdi, 2018. "A novel priority-based stochastic unit commitment considering renewable energy sources and parking lot cooperation," Energy, Elsevier, vol. 161(C), pages 308-324.
    3. Zhang, Heng & Hu, Xiao & Cheng, Haozhong & Zhang, Shenxi & Hong, Shaoyun & Gu, Qingfa, 2021. "Coordinated scheduling of generators and tie lines in multi-area power systems under wind energy uncertainty," Energy, Elsevier, vol. 222(C).
    4. Zhou, Min & Wang, Bo & Watada, Junzo, 2019. "Deep learning-based rolling horizon unit commitment under hybrid uncertainties," Energy, Elsevier, vol. 186(C).
    5. Razavi, Seyed-Ehsan & Esmaeel Nezhad, Ali & Mavalizadeh, Hani & Raeisi, Fatima & Ahmadi, Abdollah, 2018. "Robust hydrothermal unit commitment: A mixed-integer linear framework," Energy, Elsevier, vol. 165(PB), pages 593-602.
    6. Wang, Bo & Zhou, Min & Xin, Bo & Zhao, Xin & Watada, Junzo, 2019. "Analysis of operation cost and wind curtailment using multi-objective unit commitment with battery energy storage," Energy, Elsevier, vol. 178(C), pages 101-114.
    7. Smirnova, Elena & Kot, Sebastian & Kolpak, Eugeny & Shestak, Viktor, 2021. "Governmental support and renewable energy production: A cross-country review," Energy, Elsevier, vol. 230(C).
    8. Shams, Mohammad H. & Shahabi, Majid & MansourLakouraj, Mohammad & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Adjustable robust optimization approach for two-stage operation of energy hub-based microgrids," Energy, Elsevier, vol. 222(C).
    9. Yin, Yue & Liu, Tianqi & He, Chuan, 2019. "Day-ahead stochastic coordinated scheduling for thermal-hydro-wind-photovoltaic systems," Energy, Elsevier, vol. 187(C).
    10. Liu, Shuangquan & Xie, Mengfei, 2020. "Modeling the daily generation schedules in under-developed electricity markets with high-share renewables: A case study of Yunnan in China," Energy, Elsevier, vol. 201(C).
    11. Li, Chaoshun & Wang, Wenxiao & Wang, Jinwen & Chen, Deshu, 2019. "Network-constrained unit commitment with RE uncertainty and PHES by using a binary artificial sheep algorithm," Energy, Elsevier, vol. 189(C).
    12. Deane, J.P. & Drayton, G. & Ó Gallachóir, B.P., 2014. "The impact of sub-hourly modelling in power systems with significant levels of renewable generation," Applied Energy, Elsevier, vol. 113(C), pages 152-158.
    13. Jung, Christopher & Schindler, Dirk, 2021. "A global wind farm potential index to increase energy yields and accessibility," Energy, Elsevier, vol. 231(C).
    14. Ji, Bin & Yuan, Xiaohui & Chen, Zhihuan & Tian, Hao, 2014. "Improved gravitational search algorithm for unit commitment considering uncertainty of wind power," Energy, Elsevier, vol. 67(C), pages 52-62.
    15. Vatanpour, Mohsen & Sadeghi Yazdankhah, Ahmad, 2018. "The impact of energy storage modeling in coordination with wind farm and thermal units on security and reliability in a stochastic unit commitment," Energy, Elsevier, vol. 162(C), pages 476-490.
    16. Nikpour, Ahmad & Nateghi, Abolfazl & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Day-ahead optimal bidding of microgrids considering uncertainties of price and renewable energy resources," Energy, Elsevier, vol. 227(C).
    17. Kwon, Kyung-bin & Kim, Dam, 2020. "Enhanced method for considering energy storage systems as ancillary service resources in stochastic unit commitment," Energy, Elsevier, vol. 213(C).
    18. Zhou, Min & Wang, Bo & Li, Tiantian & Watada, Junzo, 2018. "A data-driven approach for multi-objective unit commitment under hybrid uncertainties," Energy, Elsevier, vol. 164(C), pages 722-733.
    19. Zhou, Bo & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Zuo, Wenping & Chen, Zhe & Wen, Jinyu, 2019. "Data-adaptive robust unit commitment in the hybrid AC/DC power system," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akhlaghi, M. & Moravej, Z. & Bagheri, A., 2022. "Maximizing wind energy utilization in smart power systems using a flexible network-constrained unit commitment through dynamic lines and transformers rating," Energy, Elsevier, vol. 261(PA).
    2. Dong, Jizhe & Li, Yuanhan & Zuo, Shi & Wu, Xiaomei & Zhang, Zuyao & Du, Jiang, 2023. "An intraperiod arbitrary ramping-rate changing model in unit commitment," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Jizhe & Li, Yuanhan & Zuo, Shi & Wu, Xiaomei & Zhang, Zuyao & Du, Jiang, 2023. "An intraperiod arbitrary ramping-rate changing model in unit commitment," Energy, Elsevier, vol. 284(C).
    2. Zhu, Xiaodong & Zhao, Shihao & Yang, Zhile & Zhang, Ning & Xu, Xinzhi, 2022. "A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors," Energy, Elsevier, vol. 238(PC).
    3. Haiyan Zheng & Liying Huang & Ran Quan, 2023. "Mixed-Integer Conic Formulation of Unit Commitment with Stochastic Wind Power," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
    4. Qing, Ke & Huang, Qi & Du, Yuefang & Jiang, Lin & Bamisile, Olusola & Hu, Weihao, 2023. "Distributionally robust unit commitment with an adjustable uncertainty set and dynamic demand response," Energy, Elsevier, vol. 262(PA).
    5. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    6. Basu, Mousumi, 2023. "Fuel constrained commitment scheduling for combined heat and power dispatch incorporating electric vehicle parking lot," Energy, Elsevier, vol. 276(C).
    7. Zhang, Heng & Hu, Xiao & Cheng, Haozhong & Zhang, Shenxi & Hong, Shaoyun & Gu, Qingfa, 2021. "Coordinated scheduling of generators and tie lines in multi-area power systems under wind energy uncertainty," Energy, Elsevier, vol. 222(C).
    8. Wang, Bo & Zhou, Min & Xin, Bo & Zhao, Xin & Watada, Junzo, 2019. "Analysis of operation cost and wind curtailment using multi-objective unit commitment with battery energy storage," Energy, Elsevier, vol. 178(C), pages 101-114.
    9. Harun Or Rashid Howlader & Oludamilare Bode Adewuyi & Ying-Yi Hong & Paras Mandal & Ashraf Mohamed Hemeida & Tomonobu Senjyu, 2019. "Energy Storage System Analysis Review for Optimal Unit Commitment," Energies, MDPI, vol. 13(1), pages 1-21, December.
    10. Huang, Kangdi & Liu, Pan & Kim, Jong-Suk & Xu, Weifeng & Gong, Yu & Cheng, Qian & Zhou, Yong, 2023. "A model coupling current non-adjustable, coming adjustable and remaining stages for daily generation scheduling of a wind-solar-hydro complementary system," Energy, Elsevier, vol. 263(PB).
    11. Georgios Semertzidis & Dimitrios Stamatakis & Vasilios Tsalavoutis & Athanasios I. Tolis, 2022. "Optimized electric vehicle charging integrated in the unit commitment problem," Operational Research, Springer, vol. 22(5), pages 5137-5204, November.
    12. Shafiekhani, Morteza & Ahmadi, Abdollah & Homaee, Omid & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Optimal bidding strategy of a renewable-based virtual power plant including wind and solar units and dispatchable loads," Energy, Elsevier, vol. 239(PD).
    13. Iram Parvez & Jianjian Shen & Ishitaq Hassan & Nannan Zhang, 2021. "Generation of Hydro Energy by Using Data Mining Algorithm for Cascaded Hydropower Plant," Energies, MDPI, vol. 14(2), pages 1-28, January.
    14. Shabazbegian, Vahid & Ameli, Hossein & Ameli, Mohammad Taghi & Strbac, Goran & Qadrdan, Meysam, 2021. "Co-optimization of resilient gas and electricity networks; a novel possibilistic chance-constrained programming approach," Applied Energy, Elsevier, vol. 284(C).
    15. Nikolaidis, Pavlos & Poullikkas, Andreas, 2021. "A novel cluster-based spinning reserve dynamic model for wind and PV power reinforcement," Energy, Elsevier, vol. 234(C).
    16. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    17. Mehigan, L. & Al Kez, Dlzar & Collins, Seán & Foley, Aoife & Ó’Gallachóir, Brian & Deane, Paul, 2020. "Renewables in the European power system and the impact on system rotational inertia," Energy, Elsevier, vol. 203(C).
    18. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    19. Zhang, Menghan & Yang, Zhifang & Lin, Wei & Yu, Juan & Dai, Wei & Du, Ershun, 2021. "Enhancing economics of power systems through fast unit commitment with high time resolution," Applied Energy, Elsevier, vol. 281(C).
    20. H. Qi & C. K. Woo & K. H. Cao & J. Zarnikau & R. Li, 2024. "Price responsiveness of solar and wind capacity demands," Post-Print hal-04597188, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221015723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.