IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3581-d351564.html
   My bibliography  Save this article

Reinventing Mobility Paradigms: Flying Car Scenarios and Challenges for Urban Mobility

Author

Listed:
  • Maria Nadia Postorino

    (Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), Alma Laurea Studiorum, University of Bologna, 40126 Bologna, Italy)

  • Giuseppe M. L. Sarné

    (Department of Civil, Energy, Environment and Materials Engineering (DICEAM), University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy)

Abstract

Flying vehicles are receiving more and more attention and are becoming an opportunity to start a new urban mobility paradigm. The most interesting feature of flying cars is the expected opportunity they could offer to reduce congestion, traffic jams and the loss of time to move between origin/destination pairs in urban contexts. In this perspective, urban air mobility might meet the concept of “sustainable mobility”, intended as the ideal model of a transport system that minimizes the environmental impacts by maximizing efficiency and travel speed. For transport engineering planning issues, further knowledge is required in this field to understand the effects that a possible urban air mobility system, including the ground traffic component, could have in terms of sustainable mobility in the above meaning. This paper contributes to this topic by providing an analysis of different urban flying car scenarios by using an agent-based approach with different traffic conditions. The preliminary results obtained on some test networks and focusing on travel cost effects suggest that the expected advantages the flying car will depend on trip origin/destination points, average distances travelled in the urban contexts and the location of transition nodes, which are introduced as interchange nodes between aerial and ground mode.

Suggested Citation

  • Maria Nadia Postorino & Giuseppe M. L. Sarné, 2020. "Reinventing Mobility Paradigms: Flying Car Scenarios and Challenges for Urban Mobility," Sustainability, MDPI, vol. 12(9), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3581-:d:351564
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3581/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3581/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jia, Dongyao & Ngoduy, Dong, 2016. "Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 172-191.
    2. Ennio Cascetta, 2009. "Transportation Systems Analysis," Springer Optimization and Its Applications, Springer, number 978-0-387-75857-2, September.
    3. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raoul Rothfeld & Mengying Fu & Miloš Balać & Constantinos Antoniou, 2021. "Potential Urban Air Mobility Travel Time Savings: An Exploratory Analysis of Munich, Paris, and San Francisco," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    2. Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
    3. Lee, Changju & Bae, Bumjoon & Lee, Yu Lim & Pak, Tae-Young, 2023. "Societal acceptance of urban air mobility based on the technology adoption framework," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    4. Brunelli, Matteo & Ditta, Chiara Caterina & Postorino, Maria Nadia, 2023. "SP surveys to estimate Airport Shuttle demand in an Urban Air Mobility context," Transport Policy, Elsevier, vol. 141(C), pages 129-139.
    5. Chiara Caterina Ditta & Maria Nadia Postorino, 2023. "Three-Dimensional Urban Air Networks for Future Urban Air Transport Systems," Sustainability, MDPI, vol. 15(18), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Nan & Yu, Bin & Cao, Feng & Dang, Pengfei & Cui, Shaohua, 2021. "An extended visual angle car-following model considering the vehicle types in the adjacent lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    2. Peng, Guanghan & Jia, Teti & Kuang, Hua & Tan, Huili, 2022. "Energy consumption in a new lattice hydrodynamic model based on the delayed effect of collaborative information transmission under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    3. Yu, Bin & Zhou, Huixin & Wang, Lin & Wang, Zirui & Cui, Shaohua, 2021. "An extended two-lane car-following model considering the influence of heterogeneous speed information on drivers with different characteristics under honk environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    4. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
    5. Paola Panuccio, 2019. "Smart Planning: From City to Territorial System," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    6. Pierluigi Coppola & Fulvio Silvestri, 2021. "Gender Inequality in Safety and Security Perceptions in Railway Stations," Sustainability, MDPI, vol. 13(7), pages 1-15, April.
    7. Federico Benassi & Marica D'Elia & Francesca Petrei, 2021. "The “meso” dimension of territorial capital: Evidence from Italy," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(1), pages 159-175, February.
    8. Vitalii Naumov & Andrzej Szarata & Hanna Vasiutina, 2022. "Simulating a Macrosystem of Cargo Deliveries by Road Transport Based on Big Data Volumes: A Case Study of Poland," Energies, MDPI, vol. 15(14), pages 1-23, July.
    9. Wang, Xiaoning & Liu, Minzhuang & Ci, Yusheng & Wu, Lina, 2022. "Effect of front two adjacent vehicles’ velocity information on car-following model construction and stability analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    10. Igor Lazov, 2019. "A Methodology for Revenue Analysis of Parking Lots," Networks and Spatial Economics, Springer, vol. 19(1), pages 177-198, March.
    11. Harshad Khadilkar, 2017. "Data-Enabled Stochastic Modeling for Evaluating Schedule Robustness of Railway Networks," Transportation Science, INFORMS, vol. 51(4), pages 1161-1176, November.
    12. Wang, Xinchang & Meng, Qiang & Miao, Lixin, 2016. "Delimiting port hinterlands based on intermodal network flows: Model and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 32-51.
    13. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    14. Reis, Vasco, 2014. "Analysis of mode choice variables in short-distance intermodal freight transport using an agent-based model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 100-120.
    15. Lin, Ting (Grace) & Xia, Jianhong (Cecilia) & Robinson, Todd P. & Goulias, Konstadinos G. & Church, Richard L. & Olaru, Doina & Tapin, John & Han, Renlong, 2014. "Spatial analysis of access to and accessibility surrounding train stations: a case study of accessibility for the elderly in Perth, Western Australia," Journal of Transport Geography, Elsevier, vol. 39(C), pages 111-120.
    16. Chakraborty, Rahul & Chakravarty, Sujoy, 2023. "Factors affecting acceptance of electric two-wheelers in India: A discrete choice survey," Transport Policy, Elsevier, vol. 132(C), pages 27-41.
    17. Cordera, Rubén & Sañudo, Roberto & dell’Olio, Luigi & Ibeas, Ángel, 2018. "Trip distribution model for regional railway services considering spatial effects between stations," Transport Policy, Elsevier, vol. 67(C), pages 77-84.
    18. Mancuso, Paolo, 2014. "An analysis of the competition that impinges on the Milan–Rome intercity passenger transport link," Transport Policy, Elsevier, vol. 32(C), pages 42-52.
    19. Paolo Delle Site, 2017. "On the Equivalence Between SUE and Fixed-Point States of Day-to-Day Assignment Processes with Serially-Correlated Route Choice," Networks and Spatial Economics, Springer, vol. 17(3), pages 935-962, September.
    20. Francis Oremo & Richard Mulwa & Nicholas Oguge, 2021. "Sustainable water access and willingness of smallholder irrigators to pay for on-farm water storage systems in Tsavo sub-catchment, Kenya," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1371-1391, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3581-:d:351564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.